Fourier Transform

The Punch Line: For absolutely integrable functions on \mathbb{R}, we can define the Fourier Transform. This essentially gives the coefficients necessary to represent the function as a "sum" (integral) of complex exponentials (analogous to trigonometric functions). Intuitively, we are converting from a spatial variable x to a frequency variable ω.

Computational Compute Fourier transforms for the following functions.
(a)

$$
f(x)= \begin{cases}\frac{n}{2}, & x \in\left[-\frac{1}{n}, \frac{1}{n}\right] \\ 0, & \text { else }\end{cases}
$$

(c)

$$
f(x)=e^{-|x|}
$$

(d)

$$
f(x)= \begin{cases}e^{i \omega_{0} x}, & |x|<\frac{n \pi}{\omega_{0}}, \\ 0, & |x| \geq \frac{n \pi}{\omega_{0}}\end{cases}
$$

Theoretical

(a) Suppose u solves the differential equation $u^{\prime \prime}+2 u^{\prime}+2 u=e^{-|x|}$. What is $F[u](\omega)$?
(b) Without computing directly, what is the Fourier transform of $f(x)=\int_{0}^{x} e^{-|t|} d t$?
(c) Suppose u and v have Fourier transforms \hat{u} and \hat{v}, respectively. Define the function

$$
w(x)=\int_{-\infty}^{\infty} u(x-y) v(y) d y
$$

(this is the convolution of u and v). What is $F[w](\omega)$?
(d) Use the above two parts to deduce a general integral formula for the solution u of the differential equation $-u^{\prime \prime}(x)+u(x)=g(x)$, assuming g is absolutely integrable.

