Fourier Transform

The Punch Line: For absolutely integrable functions on \mathbb{R} , we can define the *Fourier Transform*. This essentially gives the coefficients necessary to represent the function as a "sum" (integral) of complex exponentials (analogous to trigonometric functions). Intuitively, we are converting from a spatial variable *x* to a frequency variable ω .

Computational	Compute Fourier transforms for the following functions.
(a)	$f(x) = \begin{cases} \frac{n}{2}, & x \in \left[-\frac{1}{n}, \frac{1}{n}\right], \\ 0, & \text{else} \end{cases} $ (c) $f(x) = e^{- x }$
(b)	$f(x) = \begin{cases} e^{i\omega_0 x}, & x < \frac{n\pi}{\omega_0}, \\ 0, & x \ge \frac{n\pi}{\omega_0} \end{cases} $ (d) $f(x) = \begin{cases} 2, & x \in [-1,1], \\ 1, & x \in [-2,-1] \cup [1,2], \\ 0, & \text{else} \end{cases}$

Theoretical

- (a) Suppose *u* solves the differential equation $u'' + 2u' + 2u = e^{-|x|}$. What is $F[u](\omega)$?
- (b) Without computing directly, what is the Fourier transform of $f(x) = \int_0^x e^{-|t|} dt$?
- (c) Suppose u and v have Fourier transforms \hat{u} and \hat{v} , respectively. Define the function

$$w(x) = \int_{-\infty}^{\infty} u(x-y)v(y)\,dy$$

(this is the *convolution* of *u* and *v*). What is $F[w](\omega)$?

(d) Use the above two parts to deduce a general integral formula for the solution u of the differential equation -u''(x) + u(x) = g(x), assuming g is absolutely integrable.