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Homework 6 Key

HW 6 Graded Problems

Pg 161 (9): Consider the following putative theorem:
Theorem: There are irrational numbers a and b such that ab is rational.
Is the following proof correct? If so, what proof strategies does it use? If not, can it be fixed? Is the

theorem correct?
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is rational or it’s irrational.
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= 2, which is rational.

This proof is correct, so the theorem is also correct. The main strategy used is a proof by cases, on the rationality

or irrationality of
√

2
√

2
, which are exhaustive. In both cases, the proof produces an example of irrational numbers

a and b such that ab is rational, satisfying the theorem that such numbers exist. �

Pg 265 (11): Prove that for all n ∈ N, 9 | (4n + 6n− 1).

We proceed with a proof by induction. For n = 0, the expression 4n + 6n− 1 = 1 + 0− 1 = 0, and 9 | 0, establishing
the base case. Suppose for some n ∈ N that 9 | (4n + 6n − 1). Then there is an integer k such that 4n + 6n − 1 = 9k.
We write 4n+1 + 6(n + 1) − 1 = 4(4n + 6n − 1) − 18n + 9 = 9(4k − 2n + 1). Thus, if 4n + 6n − 1 is divisible by 9, so is
4n+1 + 6(n+ 1)− 1. This establishes for all n ∈ N that 9 | (4n + 6n− 1). �

Alternatively, we could write 4n = 9k−6n+1, yielding 4n+1 +6(n+1)−1 = 4(9k−6n+1)+6n+5 = 36k−18n+9 =
9(4k − 2n+ 1), to show the induction step works.

Pg 265 (13): Prove that for all integers a and b and all n ∈ N, (a+ b) | (a2n+1 + b2n+1).

We proceed with a proof by induction. Let a and b be given. For n = 0, the expression a2n+1 + b2n+1 = a+ b, which
is clearly divisible by a + b, establishing the base case. Suppose for some n ∈ N that (a + b) | (a2n+1 + b2n+1). Then
there is an integer k such that a2n+1 + b2n+1 = (a+ b)k. We write

a2(n+1)+1 +b2(n+1)+1 = a2(a2n+1 +b2n+1)−a2b2n+1 +b2b2n+1 = a2(a+b)k− (a−b)(a+b)b2n+1 = (a+b)(a2k− (a−b)b2n+1).

Thus, if a2n+1 + b2n+1 is divisible by a + b, so too is a2(n+1)+1 + b2(n+1)+1. This establishes for all n ∈ N that (a + b) |
(a2n+1 + b2n+1), and as a and b were arbitrary, this holds for all integers a and b. �
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GS A: Prove there are infinitely many prime numbers of the form 3k + 2 for some integer k.

There are certainly primes of the form 3k + 2: 2 = 3(0) + 2 is one of them. Suppose p1,p2, . . . ,pn are primes of the
form 3k + 2. Define N = 3p1p2 · · ·pn − 1. Since N = 3(p1p2 · · ·pn − 1) + 2, it is of the form 3k + 2. Now, N leaves
remainder −1 when divided by 3 or any pi , so in particular it is not divisible by them.

If N is prime, it is not one of p1 through pn. If N is not prime, it is the product of primes. Since 3 - N , these
primes are all of the form 3k + 1 or 3k + 2.

Since for all integers k1 and k2, (3k1 + 1)(3k2 + 1) = 3(k1k2 + k1 + k2) + 1, the product of primes of the form 3k + 1
will also have that form. Since N is of the form 3k + 2, it must therefore have a factor q of the form 3k + 2. Since
none of the pi divide N , this q is not one of p1 through pn.

In both cases, we have found a prime not on our original list. Since n was arbitrary, we conclude no finite list
contains all primes of the form 3k + 2, so there must be infinitely many of them. �

GS C Prove that for every integer n ≥ 2,
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We proceed by induction. For n = 2, 1
2+1 + 1

2·2 = 1
3 + 1

4 = 7
12 ≥

7
12 , establishing the base case. Suppose for some n ≥ 2

that 1
n+1 + 1
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7
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Using the inductive hypothesis, this is greater than or equal to − 1
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Now, − 1
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2n+2 = −4n2−3n−2+2n2+2n+1+2n2+3n+2
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It follows that for all n ≥ 2, 1
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Alternatively, we could argue that 1
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2n+2 for n ≥ 2, so 1
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which is equal to 1
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2n , and then apply the inductive hypothesis.
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