HW 6 Graded Problems

Pg 161 (9): Consider the following putative theorem:
Theorem: There are irrational numbers a and b such that a^{b} is rational.
Is the following proof correct? If so, what proof strategies does it use? If not, can it be fixed? Is the theorem correct?

Proof: Either $\sqrt{2}^{\sqrt{2}}$ is rational or it's irrational.
Case 1. $\sqrt{2}^{\sqrt{2}}$ is rational. Let $a=b=\sqrt{2}$. Then a and b are irrational, and $a^{b}=\sqrt{2}^{\sqrt{2}}$, which we are assuming in this case is rational.

Case 2. $\sqrt{2}^{\sqrt{2}}$ is irrational. Let $a=\sqrt{2}^{\sqrt{2}}$ and $b=\sqrt{2}$. Then a is irrational by assumption, and we know that b is also irrational. Also, $a^{b}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{\sqrt{2} \sqrt{2}}=\sqrt{2}^{2}=2$, which is rational.

This proof is correct, so the theorem is also correct. The main strategy used is a proof by cases, on the rationality or irrationality of $\sqrt{2}^{\sqrt{2}}$, which are exhaustive. In both cases, the proof produces an example of irrational numbers a and b such that a^{b} is rational, satisfying the theorem that such numbers exist.
$\operatorname{Pg} 265$ (11): \quad Prove that for all $n \in \mathbb{N}, 9 \mid\left(4^{n}+6 n-1\right)$.
We proceed with a proof by induction. For $n=0$, the expression $4^{n}+6 n-1=1+0-1=0$, and $9 \mid 0$, establishing the base case. Suppose for some $n \in \mathbb{N}$ that $9 \mid\left(4^{n}+6 n-1\right)$. Then there is an integer k such that $4^{n}+6 n-1=9 k$. We write $4^{n+1}+6(n+1)-1=4\left(4^{n}+6 n-1\right)-18 n+9=9(4 k-2 n+1)$. Thus, if $4^{n}+6 n-1$ is divisible by 9 , so is $4^{n+1}+6(n+1)-1$. This establishes for all $n \in \mathbb{N}$ that $9 \mid\left(4^{n}+6 n-1\right)$.

Alternatively, we could write $4^{n}=9 k-6 n+1$, yielding $4^{n+1}+6(n+1)-1=4(9 k-6 n+1)+6 n+5=36 k-18 n+9=$ $9(4 k-2 n+1)$, to show the induction step works.
$\operatorname{Pg} 265(13): \quad$ Prove that for all integers a and b and all $n \in \mathbb{N},(a+b) \mid\left(a^{2 n+1}+b^{2 n+1}\right)$.
We proceed with a proof by induction. Let a and b be given. For $n=0$, the expression $a^{2 n+1}+b^{2 n+1}=a+b$, which is clearly divisible by $a+b$, establishing the base case. Suppose for some $n \in \mathbb{N}$ that $(a+b) \mid\left(a^{2 n+1}+b^{2 n+1}\right)$. Then there is an integer k such that $a^{2 n+1}+b^{2 n+1}=(a+b) k$. We write
$a^{2(n+1)+1}+b^{2(n+1)+1}=a^{2}\left(a^{2 n+1}+b^{2 n+1}\right)-a^{2} b^{2 n+1}+b^{2} b^{2 n+1}=a^{2}(a+b) k-(a-b)(a+b) b^{2 n+1}=(a+b)\left(a^{2} k-(a-b) b^{2 n+1}\right)$.
Thus, if $a^{2 n+1}+b^{2 n+1}$ is divisible by $a+b$, so too is $a^{2(n+1)+1}+b^{2(n+1)+1}$. This establishes for all $n \in \mathbb{N}$ that $(a+b) \mid$ $\left(a^{2 n+1}+b^{2 n+1}\right)$, and as a and b were arbitrary, this holds for all integers a and b.

GS A: Prove there are infinitely many prime numbers of the form $3 k+2$ for some integer k.
There are certainly primes of the form $3 k+2: 2=3(0)+2$ is one of them. Suppose $p_{1}, p_{2}, \ldots, p_{n}$ are primes of the form $3 k+2$. Define $N=3 p_{1} p_{2} \cdots p_{n}-1$. Since $N=3\left(p_{1} p_{2} \cdots p_{n}-1\right)+2$, it is of the form $3 k+2$. Now, N leaves remainder -1 when divided by 3 or any p_{i}, so in particular it is not divisible by them.

If N is prime, it is not one of p_{1} through p_{n}. If N is not prime, it is the product of primes. Since $3 \nmid N$, these primes are all of the form $3 k+1$ or $3 k+2$.

Since for all integers k_{1} and $k_{2},\left(3 k_{1}+1\right)\left(3 k_{2}+1\right)=3\left(k_{1} k_{2}+k_{1}+k_{2}\right)+1$, the product of primes of the form $3 k+1$ will also have that form. Since N is of the form $3 k+2$, it must therefore have a factor q of the form $3 k+2$. Since none of the p_{i} divide N, this q is not one of p_{1} through p_{n}.

In both cases, we have found a prime not on our original list. Since n was arbitrary, we conclude no finite list contains all primes of the form $3 k+2$, so there must be infinitely many of them.

GS C Prove that for every integer $n \geq 2$,

$$
\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} \geq \frac{7}{12}
$$

We proceed by induction. For $n=2, \frac{1}{2+1}+\frac{1}{2 \cdot 2}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12} \geq \frac{7}{12}$, establishing the base case. Suppose for some $n \geq 2$ that $\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} \geq \frac{7}{12}$. Then we write $\frac{1}{(n+1)+1}+\frac{1}{(n+1)+2}+\cdots+\frac{1}{2(n+1)}=-\frac{1}{n+1}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}+\frac{1}{2 n+1}+\frac{1}{2 n+2}$. Using the inductive hypothesis, this is greater than or equal to $-\frac{1}{n+1}+\frac{7}{12}+\frac{1}{2 n+1}+\frac{1}{2 n+2}$.

Now, $-\frac{1}{n+1}+\frac{1}{2 n+1}+\frac{1}{2 n+2}=\frac{-4 n^{2}-3 n-2+2 n^{2}+2 n+1+2 n^{2}+3 n+2}{(n+1)(2 n+1)(2 n+2)}=\frac{1}{(2 n+1)(2 n+2)}>0$ for $n \geq 2$. Thus, $-\frac{1}{n+1}+\frac{7}{12}+\frac{1}{2 n+1}+\frac{1}{2 n+2} \geq \frac{7}{12}$. It follows that for all $n \geq 2, \frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} \geq \frac{7}{12}$.

Alternatively, we could argue that $\frac{1}{2 n+1}>\frac{1}{2 n+2}$ for $n \geq 2$, so $\frac{1}{(n+1)+1}+\frac{1}{(n+1)+2}+\cdots+\frac{1}{2(n+1)}>\frac{1}{n+2}+\cdots+\frac{1}{2 n}+\frac{1}{2 n+2}+\frac{1}{2 n+2}$, which is equal to $\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}$, and then apply the inductive hypothesis.

