HW 9 Graded Problems

Pg 233 (2): Are the following functions?

- (a) *f* defined by the provided graph.
- (b) Let *W* be the set of English words, and *A* the set of letters in the (English) alphabet.
 - Let $f = \{(w, a) \in W \times A : a \text{ is a letter in } w\}$ and $g = \{(w, a) \in W \times A : a \text{ is the first letter in } w\}$.
- (c) John, Mary, Susan, and Fred go to dinner and sit at a round table. $P = \{John, Mary, Susan, Fred\}, R = \{(p,q) \in P \times P : p \text{ is sitting immediately to the right of } q\}.$
- (a) No, because $d \notin \text{Dom}(f)$.
- (b) *f* is not, because many words have more than one distinct letters. *g* is, because each word has a unique first letter.

[Note that *a* in the definition of *f* and *g* is a variable referring to any letter in the alphabet, not necessarily "a".]

(c) *R* is a function, because at a round table, each person has exactly one other to their right.

Pg 233 (8): Suppose *A* is a set. Show that i_A is the only relation on *A* which is both an equivalence relation and a function.

Since for all $a \in A$, a = a, and a = b implies b = a, and a = b and b = c implies a = c, i_A is an equivalence relation. Since each element of A is only equivalent to itself, i_A is a function.

Suppose *f* is both an equivalence relation and a function. Then *f* is reflexive, so for all $x \in A$, $(x, x) \in f$. Since *f* is a function, this means $(x, y) \in f$ implies y = x by uniqueness. So for all $x \in A$, f(x) = x, so $f = i_A$. Thus, i_A is the only equivalence relation that is also a function.

Pg 233 (17):

- (a) Suppose $g: A \to B$ and let $R = \{(x, y) \in A \times A : g(x) = g(y)\}$. Show that *R* is an equivalence relation on *A*.
- (b) Suppose *R* is an equivalence relation on *A* and let $g : A \to A/R$ be defined by $g(x) = [x]_R$. Show that $R = \{(x, y) \in A \times A : g(x) = g(y)\}.$
- (a) For all $x \in A$, g(x) = g(x), so xRx, so R is reflexive. If $(x, y) \in R$, then g(x) = g(y), so g(y) = g(x), so $(y, x) \in R$, so R is symmetric. If $(x, y) \in R$ and $(y, z) \in R$, then g(x) = g(y) and g(y) = g(z), so g(x) = g(z), so $(x, z) \in R$, so R is transitive. Thus, R is an equivalence relation.
- (b) If xRy, then

$$z \in [x]_R \iff zRx \iff zRy \iff z \in [y]_R$$

(using transitivity for the middle equivalence), so $[x]_R = [y]_R$, so g(x) = g(y), so $R \subseteq \{(x, y) \in A \times A : g(x) = g(y)\}$. If g(x) = g(y), then $[x]_R = [y]_R$, so $x \in [x]_R \iff x \in [y]_R \iff xRy$, so $R \supseteq \{(x, y) \in A \times A : g(x) = g(y)\}$. So, $R = \{(x, y) \in A \times A : g(x) = g(y)\}$. **Pg 233 (19):** Let $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x \equiv y \pmod{5}\}$. Recall this is an equivalence relation.

- (a) Show that there is a unique function $h: \mathbb{Z}/R \to \mathbb{Z}/R$ such that for every integer x, $h([x]_R) = [x^2]_R$.
- (b) Show that there is no function $h: \mathbb{Z}/R \to \mathbb{Z}/R$ such that for every integer x, $h([x]_R) = [2^x]_R$.
- (a) Let f: Z→ Z/R be defined by f(x) = [x²]_R. If xRy, then x y = 5k, so x² y² = (x y)(x + y) = 5k(x + y), so x²Ry². So, if xRy, then f(x) = [x²]_R = [y²]_R = f(y), so f is compatible with R. By problem 18, this means there is a unique h such that h([x]_R) = [x²]_R.
 [Note: we could define h([x]_R) = [x²]_R; it was absolutely crucial to show that this actually defined a function, so we needed to check that if [x]_R = [y]_R, the definition gives the same value.]
- (b) We know $[0]_R = [5]_R$. We can check $[2^0]_R = [1]_R$ and $[2^5]_R = [32]_R = [2]_R \neq [1]_R$. Thus, such an *h* would not be a function (it would need to take multiple values on the same equivalence class).

Pg 243 (6): Let $A = \mathscr{P}(\mathbb{R})$. Define $f : \mathbb{R} \to A$ by $f(x) = \{y \in \mathbb{R} : y^2 < x\}$.

- (a) Find f(2).
- (b) Is *f* one-to-one? Is it onto?
- (a) We see $f(2) = \{y \in \mathbb{R} : y^2 < 2\} = \{y \in \mathbb{R} : -\sqrt{2} < y < \sqrt{2}\} = (-\sqrt{2}, \sqrt{2}).$
- (b) Since for all $y \in \mathbb{R}$, $y^2 \ge 0$, we see that $f(-1) = f(-2) = \emptyset$, so f is not injective.

If $z \in f(x)$, then $-z \in f(x)$, because $(-z)^2 = z^2 < x$ by hypothesis. Thus, the set $\{1\} \notin \text{Ran}(f)$, because $1 \in \{1\}$ but $-1 \notin \{1\}$. Thus, f is not onto.

[Note: it's important to keep in mind that f(x) is a *set*; while every $y \in \mathbb{R}$ is in f(x) for some x, it is not the case that every $S \in \mathscr{P}(\mathbb{R})$ is an f(x).]

ш
_

Pg 243 (8): Suppose $f : A \to B$ and $g : B \to C$.

- (a) Prove that if $g \circ f$ is onto, then g is onto.
- (b) Prove that if $g \circ f$ is one-to-one, then f is one-to-one.
- (a) Let $c \in C$ be arbitrary. If $g \circ f$ is onto, there is $a \in A$ such that $(g \circ f)(a) = c$. Since $(g \circ f)(a) = g(f(a))$, there is an element of *B*, namely f(a), that *g* sends to *c*. Since *c* was arbitrary, this shows *g* is onto if $g \circ f$ is.
- (b) Suppose for any $a_1, a_2 \in A$, $f(a_1) = f(a_2)$. Then $(g \circ f)(a_1) = g(f(a_1)) = g(f(a_2)) = (g \circ f)(a_2)$. If $g \circ f$ is one-to-one, this shows $a_1 = a_2$. Thus, if $g \circ f$ is one-to-one, f is.