HW 9 Graded Problems

$\operatorname{Pg} 233$ (2): Are the following functions?
(a) f defined by the provided graph.
(b) Let W be the set of English words, and A the set of letters in the (English) alphabet.

Let $f=\{(w, a) \in W \times A: a$ is a letter in $w\}$ and $g=\{(w, a) \in W \times A: a$ is the first letter in $w\}$.
(c) John, Mary, Susan, and Fred go to dinner and sit at a round table. $P=\{$ John, Mary, Susan, Fred $\}$, $R=\{(p, q) \in P \times P: p$ is sitting immediately to the right of $q\}$.
(a) No, because $d \notin \operatorname{Dom}(f)$.
(b) f is not, because many words have more than one distinct letters. g is, because each word has a unique first letter.
[Note that a in the definition of f and g is a variable referring to any letter in the alphabet, not necessarily "a".]
(c) R is a function, because at a round table, each person has exactly one other to their right.
$\operatorname{Pg} 233$ (8): \quad Suppose A is a set. Show that i_{A} is the only relation on A which is both an equivalence relation and a function.

Since for all $a \in A, a=a$, and $a=b$ implies $b=a$, and $a=b$ and $b=c$ implies $a=c, i_{A}$ is an equivalence relation. Since each element of A is only equivalent to itself, i_{A} is a function.

Suppose f is both an equivalence relation and a function. Then f is reflexive, so for all $x \in A,(x, x) \in f$. Since f is a function, this means $(x, y) \in f$ implies $y=x$ by uniqueness. So for all $x \in A, f(x)=x$, so $f=i_{A}$. Thus, i_{A} is the only equivalence relation that is also a function.

Pg 233 (17):
(a) Suppose $g: A \rightarrow B$ and let $R=\{(x, y) \in A \times A: g(x)=g(y)\}$. Show that R is an equivalence relation on A.
(b) Suppose R is an equivalence relation on A and let $g: A \rightarrow A / R$ be defined by $g(x)=[x]_{R}$. Show that $R=\{(x, y) \in A \times A: g(x)=g(y)\}$.
(a) For all $x \in A, g(x)=g(x)$, so $x R x$, so R is reflexive. If $(x, y) \in R$, then $g(x)=g(y)$, so $g(y)=g(x)$, so $(y, x) \in R$, so R is symmetric. If $(x, y) \in R$ and $(y, z) \in R$, then $g(x)=g(y)$ and $g(y)=g(z)$, so $g(x)=g(z)$, so $(x, z) \in R$, so R is transitive. Thus, R is an equivalence relation.
(b) If $x R y$, then

$$
z \in[x]_{R} \Longleftrightarrow z R x \Longleftrightarrow z R y \Longleftrightarrow z \in[y]_{R}
$$

(using transitivity for the middle equivalence), so $[x]_{R}=[y]_{R}$, so $g(x)=g(y)$, so $R \subseteq\{(x, y) \in A \times A: g(x)=g(y)\}$. If $g(x)=g(y)$, then $[x]_{R}=[y]_{R}$, so $x \in[x]_{R} \Longleftrightarrow x \in[y]_{R} \Longleftrightarrow x R y$, so $R \supseteq\{(x, y) \in A \times A: g(x)=g(y)\}$. So, $R=\{(x, y) \in A \times A: g(x)=g(y)\}$.
$\operatorname{Pg} 233(19): \quad$ Let $R=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x \equiv y(\bmod 5)\}$. Recall this is an equivalence relation.
(a) Show that there is a unique function $h: \mathbb{Z} / R \rightarrow \mathbb{Z} / R$ such that for every integer $x, h\left([x]_{R}\right)=\left[x^{2}\right]_{R}$.
(b) Show that there is no function $h: \mathbb{Z} / R \rightarrow \mathbb{Z} / R$ such that for every integer $x, h\left([x]_{R}\right)=\left[2^{x}\right]_{R}$.
(a) Let $f: \mathbb{Z} \rightarrow \mathbb{Z} / R$ be defined by $f(x)=\left[x^{2}\right]_{R}$. If $x R y$, then $x-y=5 k$, so $x^{2}-y^{2}=(x-y)(x+y)=5 k(x+y)$, so $x^{2} R y^{2}$. So, if $x R y$, then $f(x)=\left[x^{2}\right]_{R}=\left[y^{2}\right]_{R}=f(y)$, so f is compatible with R. By problem 18 , this means there is a unique h such that $h\left([x]_{R}\right)=\left[x^{2}\right]_{R}$.
[Note: we could define $h\left([x]_{R}\right)=\left[x^{2}\right]_{R}$; it was absolutely crucial to show that this actually defined a function, so we needed to check that if $[x]_{R}=[y]_{R}$, the definition gives the same value.]
(b) We know $[0]_{R}=[5]_{R}$. We can check $\left[2^{0}\right]_{R}=[1]_{R}$ and $\left[2^{5}\right]_{R}=[32]_{R}=[2]_{R} \neq[1]_{R}$. Thus, such an h would not be a function (it would need to take multiple values on the same equivalence class).
$\operatorname{Pg} 243$ (6): Let $A=\mathscr{P}(\mathbb{R})$. Define $f: \mathbb{R} \rightarrow A$ by $f(x)=\left\{y \in \mathbb{R}: y^{2}<x\right\}$.
(a) Find $f(2)$.
(b) Is f one-to-one? Is it onto?
(a) We see $f(2)=\left\{y \in \mathbb{R}: y^{2}<2\right\}=\{y \in \mathbb{R}:-\sqrt{2}<y<\sqrt{2}\}=(-\sqrt{2}, \sqrt{2})$.
(b) Since for all $y \in \mathbb{R}, y^{2} \geq 0$, we see that $f(-1)=f(-2)=\emptyset$, so f is not injective.

If $z \in f(x)$, then $-z \in f(x)$, because $(-z)^{2}=z^{2}<x$ by hypothesis. Thus, the set $\{1\} \notin \operatorname{Ran}(f)$, because $1 \in\{1\}$ but $-1 \notin\{1\}$. Thus, f is not onto.
[Note: it's important to keep in mind that $f(x)$ is a set; while every $y \in \mathbb{R}$ is in $f(x)$ for some x, it is not the case that every $S \in \mathscr{P}(\mathbb{R})$ is an $f(x)$.]
$\operatorname{Pg} 243$ (8): \quad Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that if $g \circ f$ is onto, then g is onto.
(b) Prove that if $g \circ f$ is one-to-one, then f is one-to-one.
(a) Let $c \in C$ be arbitrary. If $g \circ f$ is onto, there is $a \in A$ such that $(g \circ f)(a)=c$. Since $(g \circ f)(a)=g(f(a))$, there is an element of B, namely $f(a)$, that g sends to c. Since c was arbitrary, this shows g is onto if $g \circ f$ is.
(b) Suppose for any $a_{1}, a_{2} \in A, f\left(a_{1}\right)=f\left(a_{2}\right)$. Then $(g \circ f)\left(a_{1}\right)=g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)=(g \circ f)\left(a_{2}\right)$. If $g \circ f$ is one-to-one, this shows $a_{1}=a_{2}$. Thus, if $g \circ f$ is one-to-one, f is.

