Conditionals

The last major pair of logical connectors is the conditional $P \Longrightarrow Q$ and the biconditional $P \Longleftrightarrow Q$ (our book uses single arrows $P \rightarrow Q$ and $P \leftrightarrow Q$ for these; this is just a difference in notation).

The first is read "if P, then Q ", " P is a sufficient condition for Q ", or " Q is a necessary condition for P ", and is true when P is false (so the condition is not satisfied) or P and Q are both true (so the condition Q is true whenever the condition P is). This is logically equivalent to $\neg P \vee Q$ and $\neg Q \Longrightarrow \neg P$.

The second is read " P if and only if Q " and sometimes written " P iff Q ", and is true when P and Q have exactly the same truth value (both true or both false). It is logically equivalent to $(P \Longrightarrow Q) \wedge(Q \Longrightarrow P)$, $(P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q),(P \wedge Q) \vee(\neg P \wedge \neg Q)$, and $\neg(P+Q)$.

The converse of an implication $P \Longrightarrow Q$ is $\neg P \Longrightarrow \neg Q$, and the contrapositive is $\neg Q \Longrightarrow \neg P$. A conditional is equivalent to its contrapositive, but not to its converse; a biconditional is equivalent to a conditional and its converse both being true.

1: Simplify the following expressions:
(a) $(P \Longleftrightarrow Q) \wedge \neg Q$
(b) $(P \Longleftrightarrow Q) \wedge(P+Q)$
(c) $(P \Longrightarrow Q) \vee(P \Longrightarrow R)$
(d) $(P \wedge Q) \Longrightarrow(P \Longleftrightarrow Q)$
(e) $((P \Longrightarrow Q) \Longrightarrow R) \wedge(P \Longrightarrow(Q \Longrightarrow R))$

2: Analyze the logical form of the following statements. If they are arguments, are they valid? (Problems (a) through (d) are exercise 1 on page 53 of Velleman.)
(a) If this gas either has an unpleasant smell or is not explosive, then it isn't hydrogen.
(b) Having both a fever and a headache is a sufficient condition for George to go to the doctor.
(c) Both having a fever and having a headache are sufficient conditions for George to go to the doctor.
(d) If $x \neq 2$, then a necessary condition for x to be prime is that x be odd.
(e) An integer n is either even or odd (but not both). If n is odd, then $n+1$ is even. If n is even or m is even, then $n m$ is even. Thus, $n(n+1)$ is even.
(f) A sufficient condition for a function f to be continuous is for f to be constant. A necessary condition for f being differentiable is to be continuous. Thus, a discontinuous function f is not constant or not differentiable.
(g) A square s is in either set A or set B (but not both). If $s \in A$, then the triangle t is in set B. Thus, $A \neq \emptyset$.

