Conditionals

The last major pair of logical connectors is the conditional $P \implies Q$ and the biconditional $P \iff Q$ (our book uses single arrows $P \rightarrow Q$ and $P \leftrightarrow Q$ for these; this is just a difference in notation).

The first is read "if *P*, then *Q*", "*P* is a sufficient condition for *Q*", or "*Q* is a necessary condition for *P*", and is true when *P* is false (so the condition is not satisfied) or *P* and *Q* are both true (so the condition *Q* is true whenever the condition *P* is). This is logically equivalent to $\neg P \lor Q$ and $\neg Q \implies \neg P$.

The second is read "*P* if and only if *Q*" and sometimes written "*P* iff *Q*", and is true when *P* and *Q* have exactly the same truth value (both true or both false). It is logically equivalent to $(P \implies Q) \land (Q \implies P)$, $(P \implies Q) \land (\neg P \implies \neg Q), (P \land Q) \lor (\neg P \land \neg Q)$, and $\neg (P + Q)$.

The *converse* of an implication $P \implies Q$ is $\neg P \implies \neg Q$, and the *contrapositive* is $\neg Q \implies \neg P$. A conditional is equivalent to its contrapositive, but not to its converse; a biconditional is equivalent to a conditional and its converse both being true.

- 1: Simplify the following expressions:
 - (a) $(P \iff Q) \land \neg Q$
 - (b) $(P \iff Q) \land (P+Q)$
 - (c) $(P \implies Q) \lor (P \implies R)$
 - (d) $(P \land Q) \Longrightarrow (P \iff Q)$
 - (e) $((P \Longrightarrow Q) \Longrightarrow R) \land (P \Longrightarrow (Q \Longrightarrow R))$
- (a) Since $P \iff Q$ is true precisely when P and Q share the same truth values, to satisfy this formula we need $\neg P$ to be true. So, an equivalent is the much simpler $\neg P \land \neg Q$, or $\neg (P \lor Q)$ by de Morgan's law.
- (b) Since $P \iff Q$ requires to share truth values, and P + Q requires them to differ, this expression is not satisfiable, and is the constant *false*.
- (c) Here, we can write first $(\neg P \lor Q) \lor (\neg P \lor R)$. Then, the distributive law (and idempotence) gives this as $\neg P \lor Q \lor R$. If we like, we can apply the associative law and definition of the conditional to get this as $P \implies (Q \lor R)$ (a distributive law for \implies).
- (d) Here, we can write first $(P \implies Q)$ as $(P \land Q) \lor (\neg P \land \neg Q)$. Then we can write $\neg (P \land Q) \lor (P \land Q) \lor (\neg P \land \neg Q)$. The first two terms form a tautology, so this is the constant *true*.
- (e) Here, we write first $((\neg P \lor Q) \implies R) \land (P \implies (\neg Q \lor R))$. Then, we write $(\neg (\neg P \lor Q) \lor R) \land (\neg P \lor \neg Q \lor R)$. The distributive and de Morgan's laws give $(P \land \neg Q \land \neg (P \land Q)) \lor R$, and an absorption law gives $(P \land \neg Q) \lor R$. We can apply de Morgan's laws to get $\neg (\neg P \lor Q) \lor R$, or $(P \implies Q) \implies R$. The statement is not, however, equivalent to this, as this truth table shows.

Р	Q	R	$P \Longrightarrow Q$	$Q \Longrightarrow R$	$(P \Longrightarrow Q) \Longrightarrow R$	$P \implies (Q \implies R)$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F
Т	F	Т	F	Т	Т	Т
Т	F	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	F	Т
F	F	Т	Т	Т	Т	Т
F	F	F	Т	Т	F	Т

- **2:** Analyze the logical form of the following statements. If they are arguments, are they valid? (Problems (a) through (d) are exercise 1 on page 53 of Velleman.)
 - (a) If this gas either has an unpleasant smell or is not explosive, then it isn't hydrogen.
 - (b) Having both a fever and a headache is a sufficient condition for George to go to the doctor.
 - (c) Both having a fever and having a headache are sufficient conditions for George to go to the doctor.
 - (d) If $x \neq 2$, then a necessary condition for x to be prime is that x be odd.
 - (e) An integer *n* is either even or odd (but not both). If *n* is odd, then n + 1 is even. If *n* is even or *m* is even, then nm is even. Thus, n(n + 1) is even.
 - (f) A sufficient condition for a function f to be continuous is for f to be constant. A necessary condition for f being differentiable is to be continuous. Thus, a discontinuous function f is not constant or not differentiable.
 - (g) A square s is in either set A or set B (but not both). If $s \in A$, then the triangle t is in set B. Thus, $A \neq \emptyset$.
- (a) This has the logical form $(S \lor \neg E) \implies \neg H$, where S stands for "this gas has an unpleasant smell", E stands for "this gas is explosive", and H stands for "this gas is hydrogen."
- (b) This has the logical form $(F \land H) \Longrightarrow D$.
- (c) This has the logical form $(F \Longrightarrow D) \land (H \Longrightarrow D)$ (which is equivalent to $(F \lor H) \Longrightarrow D$.
- (d) This has the logical form $(x \neq 2) \implies (P(x) \implies O(x))$.
- (e) This is an argument. The premises are E(n) + O(n), $O(n) \implies E(n+1)$, and $(E(n) \lor E(m)) \implies E(nm)$ and the conclusion is E(n(n+1)). Since the conclusion is true if E(n) or E(n+1) is true (by premise 3), and if $\neg E(n)$, then O(n), thus E(n+1), this argument is valid.
- (f) Let C(f) stand for "*f* is continuous", K(f) for "*f* is constant", and D(f) for "*f* is differentiable". Then our premises are $K(f) \implies C(f)$ and $D(f) \implies C(f)$, and our conclusion is $\neg C(f) \implies (\neg K(f) \lor \neg D(f))$. The conclusion is equivalent to $(\neg C(f) \implies \neg K(f)) \lor (\neg C(f) \implies \neg D(f))$, the disjuction of the contrapositives of our premises (which is true when they are). Thus, this argument is valid.
- (g) Our premises are $(s \in A) + (s \in B)$ and $(s \in A) \implies (t \in B)$, and our conclusion is $\neg (A = \emptyset)$. However, if $s \in B$ and $t \in B$ and $A = \emptyset$, our premises are true but the conclusion false. Thus, this argument is invalid.