Conditionals

The last major pair of logical connectors is the conditional $P \Longrightarrow Q$ and the biconditional $P \Longleftrightarrow Q$ (our book uses single arrows $P \rightarrow Q$ and $P \leftrightarrow Q$ for these; this is just a difference in notation).

The first is read "if P, then Q ", " P is a sufficient condition for Q ", or " Q is a necessary condition for P ", and is true when P is false (so the condition is not satisfied) or P and Q are both true (so the condition Q is true whenever the condition P is). This is logically equivalent to $\neg P \vee Q$ and $\neg Q \Longrightarrow \neg P$.

The second is read " P if and only if Q " and sometimes written " P iff Q ", and is true when P and Q have exactly the same truth value (both true or both false). It is logically equivalent to $(P \Longrightarrow Q) \wedge(Q \Longrightarrow P)$, $(P \Longrightarrow Q) \wedge(\neg P \Longrightarrow \neg Q),(P \wedge Q) \vee(\neg P \wedge \neg Q)$, and $\neg(P+Q)$.

The converse of an implication $P \Longrightarrow Q$ is $\neg P \Longrightarrow \neg Q$, and the contrapositive is $\neg Q \Longrightarrow \neg P$. A conditional is equivalent to its contrapositive, but not to its converse; a biconditional is equivalent to a conditional and its converse both being true.

1: Simplify the following expressions:
(a) $(P \Longleftrightarrow Q) \wedge \neg Q$
(b) $(P \Longleftrightarrow Q) \wedge(P+Q)$
(c) $(P \Longrightarrow Q) \vee(P \Longrightarrow R)$
(d) $(P \wedge Q) \Longrightarrow(P \Longleftrightarrow Q)$
$(\mathrm{e})((P \Longrightarrow Q) \Longrightarrow R) \wedge(P \Longrightarrow(Q \Longrightarrow R))$
(a) Since $P \Longleftrightarrow Q$ is true precisely when P and Q share the same truth values, to satisfy this formula we need $\neg P$ to be true. So, an equivalent is the much simpler $\neg P \wedge \neg Q$, or $\neg(P \vee Q)$ by de Morgan's law.
(b) Since $P \Longleftrightarrow Q$ requires to share truth values, and $P+Q$ requires them to differ, this expression is not satisfiable, and is the constant false.
(c) Here, we can write first $(\neg P \vee Q) \vee(\neg P \vee R)$. Then, the distributive law (and idempotence) gives this as $\neg P \vee Q \vee R$. If we like, we can apply the associative law and definition of the conditional to get this as $P \Longrightarrow(Q \vee R)$ (a distributive law for $\Longrightarrow)$.
(d) Here, we can write first $(P \Longrightarrow Q)$ as $(P \wedge Q) \vee(\neg P \wedge \neg Q)$. Then we can write $\neg(P \wedge Q) \vee(P \wedge Q) \vee(\neg P \wedge \neg Q)$. The first two terms form a tautology, so this is the constant true.
(e) Here, we write first $((\neg P \vee Q) \Longrightarrow R) \wedge(P \Longrightarrow(\neg Q \vee R))$. Then, we write $(\neg(\neg P \vee Q) \vee R) \wedge(\neg P \vee \neg Q \vee R)$. The distributive and de Morgan's laws give $(P \wedge \neg Q \wedge \neg(P \wedge Q)) \vee R$, and an absorption law gives $(P \wedge \neg Q) \vee R$. We can apply de Morgan's laws to get $\neg(\neg P \vee Q) \vee R$, or $(P \Longrightarrow Q) \Longrightarrow R$. The statement is not, however, equivalent to this, as this truth table shows.

P	Q	R	$P \Longrightarrow Q$	$Q \Longrightarrow R$	$(P \Longrightarrow Q) \Longrightarrow R$	$P \Longrightarrow(Q \Longrightarrow R)$
T	T	T	T	T	T	T
T	T	F	T	F	F	F
T	F	T	F	T	T	T
T	F	F	F	T	T	T
F	T	T	T	T	T	T
F	T	F	T	F	F	T
F	F	T	T	T	T	T
F	F	F	T	T	F	T

2: Analyze the logical form of the following statements. If they are arguments, are they valid? (Problems
(a) through (d) are exercise 1 on page 53 of Velleman.)
(a) If this gas either has an unpleasant smell or is not explosive, then it isn't hydrogen.
(b) Having both a fever and a headache is a sufficient condition for George to go to the doctor.
(c) Both having a fever and having a headache are sufficient conditions for George to go to the doctor.
(d) If $x \neq 2$, then a necessary condition for x to be prime is that x be odd.
(e) An integer n is either even or odd (but not both). If n is odd, then $n+1$ is even. If n is even or m is even, then $n m$ is even. Thus, $n(n+1)$ is even.
(f) A sufficient condition for a function f to be continuous is for f to be constant. A necessary condition for f being differentiable is to be continuous. Thus, a discontinuous function f is not constant or not differentiable.
(g) A square s is in either set A or set B (but not both). If $s \in A$, then the triangle t is in set B. Thus, $A \neq \emptyset$.
(a) This has the logical form $(S \vee \neg E) \Longrightarrow \neg H$, where S stands for "this gas has an unpleasant smell", E stands for "this gas is explosive", and H stands for "this gas is hydrogen."
(b) This has the logical form $(F \wedge H) \Longrightarrow D$.
(c) This has the logical form $(F \Longrightarrow D) \wedge(H \Longrightarrow D)$ (which is equivalent to $(F \vee H) \Longrightarrow D$.
(d) This has the logical form $(x \neq 2) \Longrightarrow(P(x) \Longrightarrow O(x))$.
(e) This is an argument. The premises are $E(n)+O(n), O(n) \Longrightarrow E(n+1)$, and $(E(n) \vee E(m)) \Longrightarrow E(n m)$ and the conclusion is $E(n(n+1)$). Since the conclusion is true if $E(n)$ or $E(n+1)$ is true (by premise 3), and if $\neg E(n)$, then $O(n)$, thus $E(n+1)$, this argument is valid.
(f) Let $C(f)$ stand for " f is continuous", $K(f)$ for " f is constant", and $D(f)$ for " f is differentiable". Then our premises are $K(f) \Longrightarrow C(f)$ and $D(f) \Longrightarrow C(f)$, and our conclusion is $\neg C(f) \Longrightarrow(\neg K(f) \vee \neg D(f))$. The conclusion is equivalent to $(\neg C(f) \Longrightarrow \neg K(f)) \vee(\neg C(f) \Longrightarrow \neg D(f))$, the disjuction of the contrapositives of our premises (which is true when they are). Thus, this argument is valid.
(g) Our premises are $(s \in A)+(s \in B)$ and $(s \in A) \Longrightarrow(t \in B)$, and our conclusion is $\neg(A=\emptyset)$. However, if $s \in B$ and $t \in B$ and $A=\emptyset$, our premises are true but the conclusion false. Thus, this argument is invalid.

