Quantifiers

The logical symbol $\forall x$ means "for all x", and means that the statement that follows is true for every value of x. The logical symbol $\exists x$ means "there exists x such that", and means that the statement that follows is true for at least one value of x. The symbol $\exists !x$ means "there exists a unique x such that". The statement $(\exists !x)P(x)$ is equivalent to $(\exists x)(P(x) \land (\forall y)(P(y) \Longrightarrow (y = x)))$.

We know that $\forall x \neg P(x)$ is equivalent to $\neg \exists x P(x)$ and $\exists x \neg P(x)$ is equivalent to $\neg \forall x P(x)$. This often allows us to simplify statements.

1: We say that a function f from \mathbb{R} to \mathbb{R} is *bounded* if there exists a positive real number M such that for all $x \in \mathbb{R}$, we have $|f(x)| \le M$. If \mathcal{F} is a set of functions, we say it is *uniformly bounded* if there exists a positive real number N such that for all $f \in \mathcal{F}$ and all $x \in \mathbb{R}$ we have $|f(x)| \le N$.

Write positive logical formulas for both of these definitions and their negations. Prove or disprove the following statements:

(a) If \mathcal{F} is a uniformly bounded set of functions, then for all $f \in \mathcal{F}$, f is bounded.

(b) If \mathcal{F} is a set of functions, and for all $f \in \mathcal{F}$, f is bounded, then \mathcal{F} is uniformly bounded.

(c) If there exists $f \in \mathcal{F}$ that is not bounded, then \mathcal{F} is not uniformly bounded.

(d) If \mathcal{F} is not uniformly bounded, then there exists $f \in \mathcal{F}$ that is not bounded.

2: If *T* is a function from \mathbb{R}^n to \mathbb{R}^m , we say that *T* is *surjective* if

 $(\forall y \in \mathbb{R}^m)(\exists x \in \mathbb{R}^n)(y = T(x)).$

We say that *T* is *injective* if

$$(\forall x \in \mathbb{R}^n)(\forall y \in \mathbb{R}^n)\Big(\Big(T(x) = T(y)\Big) \Longrightarrow (x = y\Big)\Big).$$

We say that *T* is *invertible* if

$$(\forall y \in \mathbb{R}^m)(\exists !x \in \mathbb{R}^n)(y = T(x)).$$

Prove that *T* is invertible iff it is both surjective and injective. [This will likely be very challenging.]