Quantifiers

The logical symbol $\forall x$ means "for all x ", and means that the statement that follows is true for every value of x. The logical symbol $\exists x$ means "there exists x such that", and means that the statement that follows is true for at least one value of x. The symbol $\exists!x$ means "there exists a unique x such that". The statement $(\exists!x) P(x)$ is equivalent to $(\exists x)(P(x) \wedge(\forall y)(P(y) \Longrightarrow(y=x)))$.

We know that $\forall x \neg P(x)$ is equivalent to $\neg \exists x P(x)$ and $\exists x \neg P(x)$ is equivalent to $\neg \forall x P(x)$. This often allows us to simplify statements.

1: We say that a function f from \mathbb{R} to \mathbb{R} is bounded if there exists a positive real number M such that for all $x \in \mathbb{R}$, we have $|f(x)| \leq M$. If \mathcal{F} is a set of functions, we say it is uniformly bounded if there exists a positive real number N such that for all $f \in \mathcal{F}$ and all $x \in \mathbb{R}$ we have $|f(x)| \leq N$.

Write positive logical formulas for both of these definitions and their negations. Prove or disprove the following statements:
(a) If \mathcal{F} is a uniformly bounded set of functions, then for all $f \in \mathcal{F}, f$ is bounded.
(b) If \mathcal{F} is a set of functions, and for all $f \in \mathcal{F}, f$ is bounded, then \mathcal{F} is uniformly bounded.
(c) If there exists $f \in \mathcal{F}$ that is not bounded, then \mathcal{F} is not uniformly bounded.
(d) If \mathcal{F} is not uniformly bounded, then there exists $f \in \mathcal{F}$ that is not bounded.

The function f is bounded means that

$$
(\exists M>0)(\forall x)(|f(x)| \leq M) .
$$

The set \mathcal{F} is uniformly bounded means that

$$
(\exists N>0)(\forall f \in \mathcal{F})(\forall x)(|f(x)| \leq N) .
$$

The function f is not bounded means that

$$
(\forall M>0)(\exists x)(|f(x)|>M) .
$$

The set \mathcal{F} is not uniformly bounded means that

$$
(\forall N>0)(\exists f \in \mathcal{F})(\exists x)(|f(x)|>N)
$$

(a) We seek an $M>0$ such that for all $x,|f(x)| \leq M$. The definition of uniformly bounded gives us some number $N>0$. If $f \in \mathcal{F}$, then for all x we know that $|f(x)| \leq N$ by the definition of uniformly bounded. Thus, we can take $M=N$ to see that f is indeed bounded. This proves the statement given.
(b) If \mathcal{F} is the set of all constant functions f_{c}, with $f_{c}(x)=c$ (this is a set indexed by \mathbb{R}), each one is bounded, but the set is not uniformly bounded. Specifically, if $N>0$, then $\left|f_{N+1}(0)\right|=N+1>N$. This counterexample disproves the statement given.
(c) Given $N>0$, we seek a $g \in \mathcal{F}$ and a $y \in \mathbb{R}$ such that $|g(y)|>N$. Since f is not bounded and $N>0$, we know there exists $x \in \mathbb{R}$ such that $|f(x)|>N$ by the definition we gave of not bounded. Since $f \in \mathcal{F}$, taking $g=f$ and $y=x$ proves the statement. In fact, this is the contrapositive of the first statement.
(d) The set of constant functions f_{c} above is also a counterexample to this statement-the set is not uniformly bounded, but each function in it is bounded. In fact, this is the contrapositive of the second statement.

2: If T is a function from \mathbb{R}^{n} to \mathbb{R}^{m}, we say that T is surjective if

$$
\left(\forall y \in \mathbb{R}^{m}\right)\left(\exists x \in \mathbb{R}^{n}\right)(y=T(x))
$$

We say that T is injective if

$$
\left(\forall x \in \mathbb{R}^{n}\right)\left(\forall y \in \mathbb{R}^{n}\right)((T(x)=T(y)) \Longrightarrow(x=y))
$$

We say that T is invertible if

$$
\left(\forall y \in \mathbb{R}^{m}\right)\left(\exists!x \in \mathbb{R}^{n}\right)(y=T(x))
$$

Prove that T is invertible iff it is both surjective and injective. [This will likely be very challenging.]
We seek to show that if T is invertible, then it is both surjective and injective, and that if T is both surjective and injective, then it is invertible.

We will first show that if T is invertible, then it is surjective. Given any $y \in \mathbb{R}^{m}$, we must verify that there exists some $x \in \mathbb{R}^{n}$ such that $y=T(x)$. By the definition of invertibility, we are guaranteed a unique $x \in \mathbb{R}^{n}$ such that $y=T(x)$. This shows that at least one exists, so we're done.

Now we will show that if T is invertible, then it is injective. Suppose we are given $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$. If $T(x) \neq T(y)$, the conditional holds. If $T(x)=T(y)$, then let $w \in \mathbb{R}^{m}$ be that element (that is, let $\left.w=T(x)=T(y)\right)$. By the definition of invertibility, we are guaranteed a unique $z \in \mathbb{R}^{n}$ such that $w=T(z)$. Since $w=T(x)$ and $w=T(y)$ (by construction), uniqueness means $x=y=z$, so we're done.

Finally, we will show that if T is both surjective and injective, then it is invertible. Given $y \in \mathbb{R}^{m}$, we must verify there exists a unique $x \in \mathbb{R}^{n}$ such that $y=T(x)$. By surjectivity, there exists at least one x_{0} such that $y=T\left(x_{0}\right)$ (this covers existence). Suppose that $y=T\left(x_{1}\right)$. Since $T\left(x_{0}\right)=T\left(x_{1}\right)=y$, by injectivity $x_{0}=x_{1}$ (this covers uniqueness). Thus, T is invertible.

