Quantifiers

The logical symbol $\forall x$ means "for all x", and means that the statement that follows is true for every value of x. The logical symbol $\exists x$ means "there exists x such that", and means that the statement that follows is true for at least one value of x. The symbol $\exists !x$ means "there exists a unique x such that". The statement $(\exists !x)P(x)$ is equivalent to $(\exists x)(P(x) \land (\forall y)(P(y) \Longrightarrow (y = x)))$.

We know that $\forall x \neg P(x)$ is equivalent to $\neg \exists x P(x)$ and $\exists x \neg P(x)$ is equivalent to $\neg \forall x P(x)$. This often allows us to simplify statements.

1: We say that a function f from \mathbb{R} to \mathbb{R} is *bounded* if there exists a positive real number M such that for all $x \in \mathbb{R}$, we have $|f(x)| \le M$. If \mathcal{F} is a set of functions, we say it is *uniformly bounded* if there exists a positive real number N such that for all $f \in \mathcal{F}$ and all $x \in \mathbb{R}$ we have $|f(x)| \le N$.

Write positive logical formulas for both of these definitions and their negations. Prove or disprove the following statements:

(a) If \mathcal{F} is a uniformly bounded set of functions, then for all $f \in \mathcal{F}$, f is bounded.

(b) If \mathcal{F} is a set of functions, and for all $f \in \mathcal{F}$, f is bounded, then \mathcal{F} is uniformly bounded.

(c) If there exists $f \in \mathcal{F}$ that is not bounded, then \mathcal{F} is not uniformly bounded.

(d) If \mathcal{F} is not uniformly bounded, then there exists $f \in \mathcal{F}$ that is not bounded.

The function f is bounded means that

$$(\exists M > 0)(\forall x)(|f(x)| \le M).$$

The set \mathcal{F} is uniformly bounded means that

$$(\exists N > 0) (\forall f \in \mathcal{F}) (\forall x) (|f(x)| \le N).$$

The function f is not bounded means that

 $(\forall M > 0)(\exists x)(|f(x)| > M).$

The set \mathcal{F} is not uniformly bounded means that

$$(\forall N > 0)(\exists f \in \mathcal{F})(\exists x)(|f(x)| > N).$$

- (a) We seek an *M* > 0 such that for all *x*, |*f*(*x*)| ≤ *M*. The definition of uniformly bounded gives us some number *N* > 0. If *f* ∈ *F*, then for all *x* we know that |*f*(*x*)| ≤ *N* by the definition of uniformly bounded. Thus, we can take *M* = *N* to see that *f* is indeed bounded. This proves the statement given.
- (b) If \mathcal{F} is the set of all constant functions f_c , with $f_c(x) = c$ (this is a set indexed by \mathbb{R}), each one is bounded, but the set is not uniformly bounded. Specifically, if N > 0, then $|f_{N+1}(0)| = N + 1 > N$. This counterexample disproves the statement given.
- (c) Given N > 0, we seek a $g \in \mathcal{F}$ and a $y \in \mathbb{R}$ such that |g(y)| > N. Since f is not bounded and N > 0, we know there exists $x \in \mathbb{R}$ such that |f(x)| > N by the definition we gave of not bounded. Since $f \in \mathcal{F}$, taking g = f and y = x proves the statement. In fact, this is the contrapositive of the first statement.
- (d) The set of constant functions f_c above is also a counterexample to this statement—the set is not uniformly bounded, but each function in it is bounded. In fact, this is the contrapositive of the second statement.

2: If *T* is a function from \mathbb{R}^n to \mathbb{R}^m , we say that *T* is *surjective* if

 $(\forall y \in \mathbb{R}^m)(\exists x \in \mathbb{R}^n)(y = T(x)).$

We say that *T* is *injective* if

$$(\forall x \in \mathbb{R}^n) (\forall y \in \mathbb{R}^n) \Big(\Big(T(x) = T(y) \Big) \Longrightarrow \Big(x = y \Big) \Big).$$

We say that *T* is *invertible* if

$$(\forall y \in \mathbb{R}^m)(\exists !x \in \mathbb{R}^n)(y = T(x)).$$

Prove that *T* is invertible iff it is both surjective and injective. [This will likely be very challenging.]

We seek to show that if *T* is invertible, then it is both surjective and injective, and that if *T* is both surjective and injective, then it is invertible.

We will first show that if *T* is invertible, then it is surjective. Given any $y \in \mathbb{R}^m$, we must verify that there exists some $x \in \mathbb{R}^n$ such that y = T(x). By the definition of invertibility, we are guaranteed a unique $x \in \mathbb{R}^n$ such that y = T(x). This shows that at least one exists, so we're done.

Now we will show that if *T* is invertible, then it is injective. Suppose we are given $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$. If $T(x) \neq T(y)$, the conditional holds. If T(x) = T(y), then let $w \in \mathbb{R}^m$ be that element (that is, let w = T(x) = T(y)). By the definition of invertibility, we are guaranteed a unique $z \in \mathbb{R}^n$ such that w = T(z). Since w = T(x) and w = T(y) (by construction), uniqueness means x = y = z, so we're done.

Finally, we will show that if *T* is both surjective and injective, then it is invertible. Given $y \in \mathbb{R}^m$, we must verify there exists a unique $x \in \mathbb{R}^n$ such that y = T(x). By surjectivity, there exists at least one x_0 such that $y = T(x_0)$ (this covers existence). Suppose that $y = T(x_1)$. Since $T(x_0) = T(x_1) = y$, by injectivity $x_0 = x_1$ (this covers uniqueness). Thus, *T* is invertible.