Math 8

More Set Theory

Set elements need not be "simple" objects like numbers. Sets of sets are often useful to consider. The most important is the power set: the power set of a set A is $\mathscr{P}(A)=\{S: S \subseteq A\}$. That is, $(\forall S \subset U)(S \in \mathscr{P}(A) \Longleftrightarrow S \subseteq A)$.

We also talk about indexed families of sets: if for every element i of some index set I we have a set A_{i}, the indexed family is $\mathscr{A}=\left\{A_{i}: i \in I\right\}$. The family intersection $\bigcap \mathscr{A}=\bigcap_{i \in I} A_{i}=\left\{a:(\forall i \in I)\left(a \in A_{i}\right)\right\}$ and family union $\bigcup \mathscr{A}=\bigcup_{i \in I} A_{i}=\left\{a:(\exists i \in I)\left(a \in A_{i}\right)\right\}$ generalize the operations we have defined for pairs of sets.

1: \quad Let $I=\{1,2,3\}$ and $A_{i}=\{x \in \mathbb{Z}: i \leq x \leq 2 i\}$.
(a) What is $\mathscr{P}\left(A_{i}\right)$ for each i ?
(b) Why does $\mathscr{P}\left(\bigcap_{i \in I} A_{i}\right)=\bigcap_{i \in I}\left(\mathscr{P}\left(A_{i}\right)\right)$? What is it?
(c) Why doesn't $\mathscr{P}\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I}\left(\mathscr{P}\left(A_{i}\right)\right)$? [Give an example of an element in one and not the other, and argue why that is the case.]

2: Working in the universe \mathbb{N}, for all $n \in I=\{m: m \geq 2\}$ define the sets $M_{n}=\{m: m>n\} \cap\{p:(\exists q)(p=n q)\}$.
(a) Describe the members of the set M_{n} (in words).
(b) Prove that $\forall n \forall m\left(M_{n} \cap M_{m} \neq \emptyset\right)$.
(c) Prove that $\bigcap_{n \in I} M_{n}=\emptyset$.
(d) Prove that $\bigcup_{n \in I} M_{n} \neq \mathbb{N}$.
(e) What is the set $\mathbb{N} \backslash \bigcup_{n \in I} M_{n}$ (in words)? [Try writing out the first few terms.]

