Proofs II

1: Prove the following:
(a) For integers n, n^{2} is odd if and only if n is odd.
(b) If $\left\{x_{k}: 1 \leq k \leq n\right\}$ is a set of integers, and $\sum_{k=1}^{n} x_{k}=x_{1}+x_{2}+\cdots+x_{n}$ is not divisible by n, then there exist i and j such that $x_{i} \neq x_{j}$.

2: What (if anything) is wrong with the following proofs?
Theorem: Given any positive integer $n, \frac{1}{2} n(n+1)$ is a positive integer.
(a) For $n=5, \frac{1}{2} n(n+1)=\frac{1}{2}(5)(6)=15$, which is a positive integer. So, if n is a positive integer, then $\frac{1}{2} n(n+1)$ is a positive integer.
(b) This theorem has the logical form $(\forall n>0)\left(\frac{1}{2} n(n+1) \in \mathbb{Z}^{+}\right)$. This is equivalent to $\left\{\frac{1}{2} n(n+1): n>0\right\} \subseteq \mathbb{Z}^{+}$. The set on the left hand side is $\{1,3,6,10,15, \ldots\}$, whose elements are only positive integers. So, if n is a positive integer, then $\frac{1}{2} n(n+1)$ is a positive integer.
(c) Suppose $\frac{1}{2} n(n+1)=m \in \mathbb{Z}^{+}$. Then $2 m \in \mathbb{Z}^{+}$, and $2 m=n^{2}+n$. Rearranging, $n^{2}+n-2 m=0$. Then the Quadratic Formula gives $n=\frac{-1 \pm \sqrt{1+8 m}}{2}$. Since $\sqrt{1+8 m}>1$ for $m \in \mathbb{Z}^{+}$, there is always a solution with $n>0$. So, if n is a positive integer, then $\frac{1}{2} n(n+1)$ is a positive integer.
(d) For a given positive integer $n, n+1$ is also positive. The product of positive numbers is positive, so $\frac{1}{2} n(n+1)$ is positive. If n is even, $\frac{1}{2} n$ is an integer. Otherwise, if n is odd, then $n+1$ is even and $\frac{1}{2}(n+1)$ is an integer. In both cases, we then multiply by an integer, and the product of integers is an integer. So, if n is a positive integer, then $\frac{1}{2} n(n+1)$ is a positive integer.
(e) Suppose $n=p / q$ is a rational number that isn't an integer. Then $\frac{1}{2} n(n+1)=\frac{p}{2 q}\left(\frac{p+q}{q}\right)=\frac{p^{2}+p q}{2 q^{2}}$, which is not always an integer. For example, when $p=1$ and $q=2$, it is $\frac{3}{8} \notin \mathbb{Z}$. So, if n is a positive integer, then $\frac{1}{2} n(n+1)$ is a positive integer.

