1: Prove the following:

- (a) For integers n, n^2 is odd if and only if n is odd.
- (b) If $\{x_k : 1 \le k \le n\}$ is a set of integers, and $\sum_{k=1}^n x_k = x_1 + x_2 + \dots + x_n$ is not divisible by *n*, then there exist *i* and *j* such that $x_i \ne x_j$.

- 2: What (if anything) is wrong with the following proofs? **Theorem**: Given any positive integer n, $\frac{1}{2}n(n+1)$ is a positive integer.
 - (a) For n = 5, $\frac{1}{2}n(n+1) = \frac{1}{2}(5)(6) = 15$, which is a positive integer. So, if *n* is a positive integer, then $\frac{1}{2}n(n+1)$ is a positive integer.
 - (b) This theorem has the logical form $(\forall n > 0)(\frac{1}{2}n(n+1) \in \mathbb{Z}^+)$. This is equivalent to $\{\frac{1}{2}n(n+1) : n > 0\} \subseteq \mathbb{Z}^+$. The set on the left hand side is $\{1, 3, 6, 10, 15, ...\}$, whose elements are only positive integers. So, if *n* is a positive integer, then $\frac{1}{2}n(n+1)$ is a positive integer.
 - (c) Suppose $\frac{1}{2}n(n+1) = m \in \mathbb{Z}^+$. Then $2m \in \mathbb{Z}^+$, and $2m = n^2 + n$. Rearranging, $n^2 + n 2m = 0$. Then the Quadratic Formula gives $n = \frac{-1 \pm \sqrt{1+8m}}{2}$. Since $\sqrt{1+8m} > 1$ for $m \in \mathbb{Z}^+$, there is always a solution with n > 0. So, if *n* is a positive integer, then $\frac{1}{2}n(n+1)$ is a positive integer.
- (d) For a given positive integer n, n + 1 is also positive. The product of positive numbers is positive, so $\frac{1}{2}n(n+1)$ is positive. If n is even, $\frac{1}{2}n$ is an integer. Otherwise, if n is odd, then n + 1 is even and $\frac{1}{2}(n+1)$ is an integer. In both cases, we then multiply by an integer, and the product of integers is an integer. So, if n is a positive integer, then $\frac{1}{2}n(n+1)$ is a positive integer.
- (e) Suppose n = p/q is a rational number that isn't an integer. Then $\frac{1}{2}n(n+1) = \frac{p}{2q}\left(\frac{p+q}{q}\right) = \frac{p^2+pq}{2q^2}$, which is not always an integer. For example, when p = 1 and q = 2, it is $\frac{3}{8} \notin \mathbb{Z}$. So, if *n* is a positive integer, then $\frac{1}{2}n(n+1)$ is a positive integer.