
Math 8
Worksheet 8

Proofs II

1: Prove the following:

(a) For integers n, n2 is odd if and only if n is odd.

(b) If {xk : 1 ≤ k ≤ n} is a set of integers, and
n∑

k=1
xk = x1 + x2 + · · ·+ xn is not divisible by n, then there exist i

and j such that xi , xj .

(a) Suppose n is odd. The product of odd numbers is odd, so n2 is odd.

Conversely, suppose n is even (so not odd). The product of even numbers is even, so n2 is even. Since we
have shown that if n is odd then n2 is odd, and that if n is not odd then n2 is not odd, we can conclude that
n2 is odd if and only if n is odd.

(b) We will prove the contrapositive: if for all i and j, xi = xj , then
n∑

k=1
xk is divisible by n. Suppose for all i and

j, xi = xj . In particular, for all k, xk = x1. Then
n∑

k=1
xk =

n∑
k=1

x1 = nx1 (it is the sum of n copies of x1). This is

divisible by n. So, if
∑n

k=1 xk is not divisible by n, there must be some i and j so that xi , xj .
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2: What (if anything) is wrong with the following proofs?
Theorem: Given any positive integer n, 1

2n(n+ 1) is a positive integer.

(a) For n = 5, 1
2n(n+1) = 1

2 (5)(6) = 15, which is a positive integer. So, if n is a positive integer, then 1
2n(n+1)

is a positive integer.

(b) This theorem has the logical form (∀n > 0)( 1
2n(n+ 1) ∈ Z+). This is equivalent to

{
1
2n(n+ 1) : n > 0

}
⊆ Z+.

The set on the left hand side is {1,3,6,10,15, ...}, whose elements are only positive integers. So, if n is a
positive integer, then 1

2n(n+ 1) is a positive integer.

(c) Suppose 1
2n(n + 1) = m ∈ Z+. Then 2m ∈ Z+, and 2m = n2 + n. Rearranging, n2 + n − 2m = 0. Then the

Quadratic Formula gives n = −1±
√

1+8m
2 . Since

√
1 + 8m > 1 for m ∈ Z+, there is always a solution with

n > 0. So, if n is a positive integer, then 1
2n(n+ 1) is a positive integer.

(d) For a given positive integer n, n + 1 is also positive. The product of positive numbers is positive, so
1
2n(n+ 1) is positive. If n is even, 1

2n is an integer. Otherwise, if n is odd, then n+ 1 is even and 1
2 (n+ 1)

is an integer. In both cases, we then multiply by an integer, and the product of integers is an integer.
So, if n is a positive integer, then 1

2n(n+ 1) is a positive integer.

(e) Suppose n = p/q is a rational number that isn’t an integer. Then 1
2n(n + 1) = p

2q

(
p+q
q

)
= p2+pq

2q2 , which is

not always an integer. For example, when p = 1 and q = 2, it is 3
8 < Z. So, if n is a positive integer, then

1
2n(n+ 1) is a positive integer.

(a) Only n = 5 was checked, but the theorem requires the statement to be true for all positive integers.

(b) There’s no argument why the set consists of only positive integers. All of the computed examples are, but
there’s no guarantee that further along in the sequence they will continue to be positive. This is just a slightly
fancier version of the first “proof”.

(c) There are two problems here. First, it isn’t clear that the positive solution for n is an integer. We might be
able to fix this by looking at the form of m (although this is likely to be circular, proving n is an integer
by using the assumption it is an integer). More seriously, this proof assumes the conclusion and shows the
hypotheses—this is the wrong direction. At best, it would establish the converse (if n is not a positive integer,
1
2n(n+ 1) is not either).

(d) This proof is correct.

(e) This is attempting to prove the converse. It also has the issue that the supposition is not the negation of the
hypothesis (that n is not a positive integer), but only a subcase of that (we would also have to check irrational
numbers and negative integers to establish the converse).
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