Proofs III

1: Prove the following:
(a) Given an indexed family of sets $\left\{A_{i}: i \in I\right\}$ and $J \subseteq I, \bigcap_{i \in I} A_{i} \subseteq \bigcap_{j \in J} A_{j}$.
(b) If $A \subseteq B$, then $\mathscr{P}(A) \subseteq \mathscr{P}(B)$.
(c) Given two families of sets \mathcal{F} and \mathcal{G}, if $\bigcap \mathcal{F}=\bigcap \mathcal{G} \neq \emptyset$, then for all $F \in \mathcal{F}, G \in \mathcal{G}, F \cap G \neq \emptyset$.

2: What (if anything) is wrong with the following proofs? Are the theorems true or false?
(a) Theorem: Suppose $x \neq \pm 1$. Then if $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$, then $x \neq 2$.

Proof: Suppose $x=2$. Then $\frac{x^{2}+1}{x^{2}-1}=\frac{4+1}{4-1}=\frac{5}{3}$, while $\frac{x+1}{x-1}=\frac{2+1}{2-1}=3 \neq \frac{5}{3}$. This contradicts our supposition that $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$, so $x \neq 2$.
(b) Theorem: Suppose $x \neq \pm 1$ and $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$. Then $x \neq 2$.

Proof: Suppose $x=2$. Then $\frac{x^{2}+1}{x^{2}-1}=\frac{4+1}{4-1}=\frac{5}{3}$, while $\frac{x+1}{x-1}=\frac{2+1}{2-1}=3 \neq \frac{5}{3}$. This contradicts our supposition that $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$, so $x \neq 2$.
(c) Theorem: Suppose $x \neq \pm 1$. Then if $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$, then $x \neq 2$.

Proof: Suppose $x=2$. Then $\frac{x^{2}+1}{x^{2}-1}=\frac{4+1}{4-1}=\frac{5}{3}$, while $\frac{x+1}{x-1}=\frac{2+1}{2-1}=3 \neq \frac{5}{3}$. This shows the contrapositive of the theorem, so the theorem is true.
(d) Theorem: Suppose that $x \neq 0$ and $x y=1+x^{2} y$. Then $y \neq 0$.

Proof: Since $x y=1+x^{2} y$, we have $x(1-x) y=1$. Since $x \neq 0, x(1-x) \neq 0$, so we can divide both sides by it to get $y=\frac{1}{x(1-x)} \neq 0$. So, $y \neq 0$.
(e) Theorem: Suppose that x and y are real numbers. If $x+y=0$, then if $x>0$ then $y<0$.

Proof: Suppose $x+y=0$ and $x \leq 0$. Then $x+y \leq 0+y=y$, so $y \geq 0$. Thus, if $x>0$, then $y<0$.

