1: Prove the following:

- (a) Given an indexed family of sets $\{A_i : i \in I\}$ and $J \subseteq I$, $\bigcap_{i \in I} A_i \subseteq \bigcap_{j \in J} A_j$.
- (b) If $A \subseteq B$, then $\mathscr{P}(A) \subseteq \mathscr{P}(B)$.

(c) Given two families of sets \mathcal{F} and \mathcal{G} , if $\bigcap \mathcal{F} = \bigcap \mathcal{G} \neq \emptyset$, then for all $F \in \mathcal{F}$, $G \in \mathcal{G}$, $F \cap G \neq \emptyset$.

- 2: What (if anything) is wrong with the following proofs? Are the theorems true or false?
 - (a) *Theorem*: Suppose $x \neq \pm 1$. Then if $\frac{x^2+1}{x^2-1} = \frac{x+1}{x-1}$, then $x \neq 2$. *Proof*: Suppose x = 2. Then $\frac{x^2+1}{x^2-1} = \frac{4+1}{4-1} = \frac{5}{3}$, while $\frac{x+1}{x-1} = \frac{2+1}{2-1} = 3 \neq \frac{5}{3}$. This contradicts our supposition that $\frac{x^2+1}{x^2-1} = \frac{x+1}{x-1}$, so $x \neq 2$.
- (b) *Theorem*: Suppose $x \neq \pm 1$ and $\frac{x^2+1}{x^2-1} = \frac{x+1}{x-1}$. Then $x \neq 2$. *Proof*: Suppose x = 2. Then $\frac{x^2+1}{x^2-1} = \frac{4+1}{4-1} = \frac{5}{3}$, while $\frac{x+1}{x-1} = \frac{2+1}{2-1} = 3 \neq \frac{5}{3}$. This contradicts our supposition that $\frac{x^2+1}{x^2-1} = \frac{x+1}{x-1}$, so $x \neq 2$.
- (c) *Theorem*: Suppose $x \neq \pm 1$. Then if $\frac{x^2+1}{x^2-1} = \frac{x+1}{x-1}$, then $x \neq 2$. *Proof*: Suppose x = 2. Then $\frac{x^2+1}{x^2-1} = \frac{4+1}{4-1} = \frac{5}{3}$, while $\frac{x+1}{x-1} = \frac{2+1}{2-1} = 3 \neq \frac{5}{3}$. This shows the contrapositive of the theorem, so the theorem is true.
- (d) *Theorem*: Suppose that $x \neq 0$ and $xy = 1 + x^2y$. Then $y \neq 0$. *Proof*: Since $xy = 1 + x^2y$, we have x(1 - x)y = 1. Since $x \neq 0$, $x(1 - x) \neq 0$, so we can divide both sides by it to get $y = \frac{1}{x(1-x)} \neq 0$. So, $y \neq 0$.
- (e) *Theorem*: Suppose that *x* and *y* are real numbers. If x + y = 0, then if x > 0 then y < 0. *Proof*: Suppose x + y = 0 and $x \le 0$. Then $x + y \le 0 + y = y$, so $y \ge 0$. Thus, if x > 0, then y < 0.