Math 8

Proofs III

1: Prove the following:
(a) Given an indexed family of sets $\left\{A_{i}: i \in I\right\}$ and $J \subseteq I, \bigcap_{i \in I} A_{i} \subseteq \bigcap_{j \in J} A_{j}$.
(b) If $A \subseteq B$, then $\mathscr{P}(A) \subseteq \mathscr{P}(B)$.
(c) Given two families of sets \mathcal{F} and \mathcal{G}, if $\bigcap \mathcal{F}=\bigcap \mathcal{G} \neq \emptyset$, then for all $F \in \mathcal{F}, G \in \mathcal{G}, F \cap G \neq \emptyset$.
(a) Suppose $x \in \bigcap_{i \in I} A_{i}$, and let $j \in J$ be arbitrary. Then, since $J \subseteq I, j \in I$. So, $x \in A_{j}$. Since j was arbitrary, $x \in \bigcap_{j \in J} A_{j}$.
(b) Suppose $S \in \mathscr{P}(A)$. If $x \in S$, then because $S \subseteq A, x \in A$. Then because $B \subseteq A, x \in B$. So, $S \subseteq B$, or $S \in \mathscr{P}(B)$. This works for any $S \in \mathscr{P}(A)$, so $\mathscr{P}(A) \subseteq \mathscr{P}(B)$.
(c) Let $F \in \mathcal{F}$ and $G \in \mathcal{G}$ be arbitrary. Since $\bigcap \mathcal{G}$ is nonempty, there is some $x \in \cap \mathcal{G}$, so in particular $x \in G$. Since $\bigcap \mathcal{G}=\bigcap \mathcal{F}, x \in \bigcap \mathcal{F}$, so in particular $x \in F$. This means that $x \in F \cap G$, so the set is nonempty. Since F and G were arbitrary, this works for all pairs of $F \in \mathcal{F}$ and $G \in \mathcal{G}$.

2: What (if anything) is wrong with the following proofs? Are the theorems true or false?
(a) Theorem: Suppose $x \neq \pm 1$. Then if $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$, then $x \neq 2$.

Proof: Suppose $x=2$. Then $\frac{x^{2}+1}{x^{2}-1}=\frac{4+1}{4-1}=\frac{5}{3}$, while $\frac{x+1}{x-1}=\frac{2+1}{2-1}=3 \neq \frac{5}{3}$. This contradicts our supposition that $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$, so $x \neq 2$.
(b) Theorem: Suppose $x \neq \pm 1$ and $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$. Then $x \neq 2$.

Proof: Suppose $x=2$. Then $\frac{x^{2}+1}{x^{2}-1}=\frac{4+1}{4-1}=\frac{5}{3}$, while $\frac{x+1}{x-1}=\frac{2+1}{2-1}=3 \neq \frac{5}{3}$. This contradicts our supposition that $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$, so $x \neq 2$.
(c) Theorem: Suppose $x \neq \pm 1$. Then if $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$, then $x \neq 2$.

Proof: Suppose $x=2$. Then $\frac{x^{2}+1}{x^{2}-1}=\frac{4+1}{4-1}=\frac{5}{3}$, while $\frac{x+1}{x-1}=\frac{2+1}{2-1}=3 \neq \frac{5}{3}$. This shows the contrapositive of the theorem, so the theorem is true.
(d) Theorem: Suppose that $x \neq 0$ and $x y=1+x^{2} y$. Then $y \neq 0$.

Proof: Since $x y=1+x^{2} y$, we have $x(1-x) y=1$. Since $x \neq 0, x(1-x) \neq 0$, so we can divide both sides by it to get $y=\frac{1}{x(1-x)} \neq 0$. So, $y \neq 0$.
(e) Theorem: Suppose that x and y are real numbers. If $x+y=0$, then if $x>0$ then $y<0$.

Proof: Suppose $x+y=0$ and $x \leq 0$. Then $x+y \leq 0+y=y$, so $y \geq 0$. Thus, if $x>0$, then $y<0$.
(a) We never in fact supposed that $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$ in our proof, it is merely implied by the form of the theorem statement. Still, this is not a contradiction, so the proof is incorrect. The theorem is correct, though, as verified in part (c).
(b) Here, the theorem statement was not a conditional, but gave us as a hypothesis that $\frac{x^{2}+1}{x^{2}-1}=\frac{x+1}{x-1}$. So, the contradiction is of something we are assuming true at that point in the theorem, so this proof is correct.
(c) Here, we never claim a contradiction, just use the contrapositive. This proof is correct.
(d) We are not given that $x \neq 1$, so we cannot conclude $x(1-x) \neq 0$. Thus, the proof is incorrect. However, if $x=1$, our equation becomes $y=1+y$, contradicting our supposition (from the theorem statement) that $x y=1+x^{2} y$, so in fact $x \neq 1$.
We can observe that, if $y=0$, then $x(1-x) y=0 \neq 1$. This is not quite the contrapositive-our conclusion is not a conditional. However, proving that if $x y=1+x^{2} y$ then $y \neq 0$ and knowing $x y=1+x^{2} y$ does prove $y \neq 0$, so this is a valid way of thinking about how to provide a correct proof.
(e) Supposing $x \leq 0$ will not help us with the desired theorem, only the converse. Instead, to see this is true suppose $x+y=0$ and $y \geq 0$. Then $x+y \geq x+0=x$, so $x \leq 0$; this is the contrapositive, so we conclude the theorem statement is true.

