1: Prove the following:

- (a) (Velleman pg. 135 n. 21) Suppose \mathcal{F} and \mathcal{G} are families of sets. If $\bigcup \mathcal{F} \nsubseteq \bigcup \mathcal{G}$, then there is some $A \in \mathcal{F}$ such that for all $B \in \mathcal{G}$, $A \nsubseteq B$.
- (b) (Velleman pg. 134 n. 12) For all $x \in \mathbb{R}$, $x \neq 1$ is equivalent to there being $y \in \mathbb{R}$ such that x + y = xy.
- (c) Suppose |x 1| < 1. Then x > 0.
- (d) If $3 \mid n$, then the remainder of $n \div 6$ is either 0 or 3.

- **2:** Give a counterexample to the following "theorems".
 - (a) If *a*, *b*, and *c* are real numbers, the polynomial $ax^2 + 2bx + c$ has two distinct real roots.
 - (b) Suppose $x \neq 0$ is given. Then for any real number *y*, there exists a real number *z* such that $z^2 < x + y$.
 - (c) If $\bigcup \mathcal{F} \subseteq \bigcup \mathcal{G}$, then there exists some $A \in \mathcal{F}$ and $B \in \mathcal{G}$ such that either $A \subseteq B$ or $B \subseteq A$.