Proofs IV

1: Prove the following:
(a) (Velleman pg. 135 n . 21) Suppose \mathcal{F} and \mathcal{G} are families of sets. If $\cup \mathcal{F} \nsubseteq \cup \mathcal{G}$, then there is some $A \in \mathcal{F}$ such that for all $B \in \mathcal{G}, A \nsubseteq B$.
(b) (Velleman pg. 134 n .12) For all $x \in \mathbb{R}, x \neq 1$ is equivalent to there being $y \in \mathbb{R}$ such that $x+y=x y$.
(c) Suppose $|x-1|<1$. Then $x>0$.
(d) If $3 \mid n$, then the remainder of $n \div 6$ is either 0 or 3 .

2: Give a counterexample to the following "theorems".
(a) If a, b, and c are real numbers, the polynomial $a x^{2}+2 b x+c$ has two distinct real roots.
(b) Suppose $x \neq 0$ is given. Then for any real number y, there exists a real number z such that $z^{2}<x+y$.
(c) If $\bigcup \mathcal{F} \subseteq \bigcup \mathcal{G}$, then there exists some $A \in \mathcal{F}$ and $B \in \mathcal{G}$ such that either $A \subseteq B$ or $B \subseteq A$.

