Proofs IV

1: Prove the following:
(a) (Velleman pg. 135 n .21) Suppose \mathcal{F} and \mathcal{G} are families of sets. If $\cup \mathcal{F} \nsubseteq \bigcup \mathcal{G}$, then there is some $A \in \mathcal{F}$ such that for all $B \in \mathcal{G}, A \nsubseteq B$.
(b) (Velleman pg. 134 n. 12) For all $x \in \mathbb{R}, x \neq 1$ is equivalent to there being $y \in \mathbb{R}$ such that $x+y=x y$.
(c) Suppose $|x-1|<1$. Then $x>0$.
(d) If $3 \mid n$, then the remainder of $n \div 6$ is either 0 or 3 .
(a) Since $\bigcup \mathcal{F} \nsubseteq \bigcup \mathcal{G}$, there is some $x \in \bigcup \mathcal{F}$ such that $x \notin \bigcup \mathcal{G}$. Since $x \in \bigcup \mathcal{F}$, there is some $A \in \mathcal{F}$ such that $x \in A$. Let $B \in \mathcal{G}$ be arbitrary. Since $x \notin \bigcup \mathcal{G}, x \notin B$, so in particular $A \nsubseteq B$.
[An important note here is that we produced the set A before we chose B : it's important that A does not depend on B, so this order is important.]
(b) We start by showing if $x \neq 1$ there is $y \in \mathbb{R}$ such that $x+y=x y$. Let $y=\frac{x}{x-1}$ (this is well-defined because $x \neq 1$). Then

$$
x+y=\frac{x(x-1)+x}{x-1}=\frac{x^{2}}{x-1}=x\left(\frac{x}{x-1}\right)=x y .
$$

Now we show if $x=1$, for all $y \in \mathbb{R}, x+y \neq x y$. In fact, $x+y=1+y$, while $x y=y$. Since $1+y \neq y, x+y \neq x y$.
[Note that we simply presented y in the first direction, and then proved it worked, rather than deriving it in the proof.]
(c) First suppose $x-1 \geq 0$. Then $x \geq 1>0$, so $x>0$. Otherwise, suppose $x-1<0$. Then $|x-1|=-(x-1)=1-x$. Then $1-x<1$; adding x and subtracting 1 from both sides gives $0<x$. Since our cases for $x-1$ were exhaustive, we conclude that $x>0$.
(d) Since $3 \mid n$, we can write $n=3 k$ for some integer k. If k is even, we can write $k=2 j$ for some integer j, so $n=6 j$. Then the remainder of $n \div 6$ is zero. Otherwise, if k is odd, we can write $k=2 j+1$ for some integer j, so $n=6 j+3$. Then the remainder of $n \div 6$ is three. Our cases were exhaustive, so the remainder is either zero or three.

2: Give a counterexample to the following "theorems".
(a) If a, b, and c are real numbers, the polynomial $a x^{2}+2 b x+c$ has two distinct real roots.
(b) Suppose $x \neq 0$ is given. Then for any real number y, there exists a real number z such that $z^{2}<x+y$.
(c) If $\cup \mathcal{F} \subseteq \bigcup \mathcal{G}$, then there exists some $A \in \mathcal{F}$ and $B \in \mathcal{G}$ such that either $A \subseteq B$ or $B \subseteq A$.
(a) If $a=b=c=0$, the polynomial $a x^{2}+2 b x+c=0$ for all x, so it has more than two roots. Alternately, if $a=1$, $b=0$, and $c=1$, the polynomial $a x^{2}+2 b x+c=x^{2}+1 \geq 1$ for all x, so it has no real roots. Alternately, if $a=0$, $b=1$, and $c=0$, the polynomial $a x^{2}+2 b x+c=2 x$ has a unique root at $x=0$. Any of these three satisfy the requirements.
[Note: we can create families of counterexamples along these lines: if $b=0$ and a and c are both positive, we have the second situation, and if $a=0, b \neq 0$ we have the third. However, without choosing some particular value for all the constants a, b, and c, we don't have a counterexample. Sometimes this causes serious problems: if we just specified that $b=0$ to get to the second situation, we could get polynomials like $x^{2}-1$, which do have two distinct real roots.]
(b) Here, we think of x as something we cannot choose, so our counterexample is some choice of y that can depend on x. For example, we can take $y=-x$; then $x+y=0$. Since $z^{2} \geq 0$ for all real z, there is no z as in the theorem.
[Note: nowhere do we use that $x \neq 0$. This isn't a problem; sometimes theorems have stronger requirements than are actually needed.]
(c) Here we need to give families \mathcal{F} and \mathcal{G} such that all choices of A and B do not satisfy the theorem. One way to do this is to put $\mathcal{F}=\{\{1,2\}\}$ and $\mathcal{G}=\{\{1,3\},\{2,3\}\}$. Then $\cup \mathcal{F}=\{1,2\}$, and $\cup \mathcal{G}=\{1,2,3\}$, so $\cup \mathcal{F} \subseteq \cup \mathcal{G}$, so the theorem should apply. However, the set $\{1,2\} \in \mathcal{F}$ is not a subset of either $\{1,3\}$ or $\{2,3\}$, and neither set in \mathcal{G} can be a subset of it, because it doesn't include 3.
[Note: here, we have a particularly simple counterexample. We could also do something like setting $\mathcal{F}=$ $\{\{i, i+1\}: i \in \mathbb{Z}\}$ and $\mathcal{G}=\{\{i, i+2\}: i \in \mathbb{Z}\}$. However, this would require a proof that no element of \mathcal{F} is a subset of any element of \mathcal{G} and vice versa; while in the smaller counterexample this could be checked by inspection. If possible, finite counterexamples are often easier to verify.]

