1: Prove the following:

- (a) (Velleman pg. 135 n. 21) Suppose \mathcal{F} and \mathcal{G} are families of sets. If $\bigcup \mathcal{F} \nsubseteq \bigcup \mathcal{G}$, then there is some $A \in \mathcal{F}$ such that for all $B \in \mathcal{G}$, $A \nsubseteq B$.
- (b) (Velleman pg. 134 n. 12) For all $x \in \mathbb{R}$, $x \neq 1$ is equivalent to there being $y \in \mathbb{R}$ such that x + y = xy.
- (c) Suppose |x 1| < 1. Then x > 0.
- (d) If $3 \mid n$, then the remainder of $n \div 6$ is either 0 or 3.
- (a) Since $\bigcup \mathcal{F} \nsubseteq \bigcup \mathcal{G}$, there is some $x \in \bigcup \mathcal{F}$ such that $x \notin \bigcup \mathcal{G}$. Since $x \in \bigcup \mathcal{F}$, there is some $A \in \mathcal{F}$ such that $x \in A$. Let $B \in \mathcal{G}$ be arbitrary. Since $x \notin \bigcup \mathcal{G}$, $x \notin B$, so in particular $A \nsubseteq B$.

[An important note here is that we produced the set *A* before we chose *B*: it's important that *A* does not depend on *B*, so this order is important.]

(b) We start by showing if $x \neq 1$ there is $y \in \mathbb{R}$ such that x + y = xy. Let $y = \frac{x}{x-1}$ (this is well-defined because $x \neq 1$). Then

$$x + y = \frac{x(x-1) + x}{x-1} = \frac{x^2}{x-1} = x\left(\frac{x}{x-1}\right) = xy.$$

Now we show if x = 1, for all $y \in \mathbb{R}$, $x + y \neq xy$. In fact, x + y = 1 + y, while xy = y. Since $1 + y \neq y$, $x + y \neq xy$.

[Note that we simply presented *y* in the first direction, and then proved it worked, rather than deriving it in the proof.]

- (c) First suppose $x 1 \ge 0$. Then $x \ge 1 > 0$, so x > 0. Otherwise, suppose x 1 < 0. Then |x 1| = -(x 1) = 1 x. Then 1 - x < 1; adding x and subtracting 1 from both sides gives 0 < x. Since our cases for x - 1 were exhaustive, we conclude that x > 0.
- (d) Since $3 \mid n$, we can write n = 3k for some integer k. If k is even, we can write k = 2j for some integer j, so n = 6j. Then the remainder of $n \div 6$ is zero. Otherwise, if k is odd, we can write k = 2j + 1 for some integer j, so n = 6j + 3. Then the remainder of $n \div 6$ is three. Our cases were exhaustive, so the remainder is either zero or three.

- 2: Give a counterexample to the following "theorems".
 - (a) If *a*, *b*, and *c* are real numbers, the polynomial $ax^2 + 2bx + c$ has two distinct real roots.
 - (b) Suppose $x \neq 0$ is given. Then for any real number *y*, there exists a real number *z* such that $z^2 < x + y$.
 - (c) If $\bigcup \mathcal{F} \subseteq \bigcup \mathcal{G}$, then there exists some $A \in \mathcal{F}$ and $B \in \mathcal{G}$ such that either $A \subseteq B$ or $B \subseteq A$.
- (a) If a = b = c = 0, the polynomial $ax^2 + 2bx + c = 0$ for all x, so it has more than two roots. Alternately, if a = 1, b = 0, and c = 1, the polynomial $ax^2 + 2bx + c = x^2 + 1 \ge 1$ for all x, so it has no real roots. Alternately, if a = 0, b = 1, and c = 0, the polynomial $ax^2 + 2bx + c = 2x$ has a unique root at x = 0. Any of these three satisfy the requirements.

[Note: we can create families of counterexamples along these lines: if b = 0 and a and c are both positive, we have the second situation, and if a = 0, $b \neq 0$ we have the third. However, without choosing some particular value for all the constants a, b, and c, we don't have a counterexample. Sometimes this causes serious problems: if we just specified that b = 0 to get to the second situation, we could get polynomials like $x^2 - 1$, which do have two distinct real roots.]

(b) Here, we think of x as something we cannot choose, so our counterexample is some choice of y that can depend on x. For example, we can take y = -x; then x + y = 0. Since $z^2 \ge 0$ for all real z, there is no z as in the theorem.

[Note: nowhere do we use that $x \neq 0$. This isn't a problem; sometimes theorems have stronger requirements than are actually needed.]

(c) Here we need to give families \mathcal{F} and \mathcal{G} such that all choices of A and B do not satisfy the theorem. One way to do this is to put $\mathcal{F} = \{\{1,2\}\}$ and $\mathcal{G} = \{\{1,3\},\{2,3\}\}$. Then $\bigcup \mathcal{F} = \{1,2\}$, and $\bigcup \mathcal{G} = \{1,2,3\}$, so $\bigcup \mathcal{F} \subseteq \bigcup \mathcal{G}$, so the theorem should apply. However, the set $\{1,2\} \in \mathcal{F}$ is not a subset of either $\{1,3\}$ or $\{2,3\}$, and neither set in \mathcal{G} can be a subset of it, because it doesn't include 3.

[Note: here, we have a particularly simple counterexample. We could also do something like setting $\mathcal{F} = \{\{i, i+1\} : i \in \mathbb{Z}\}$ and $\mathcal{G} = \{\{i, i+2\} : i \in \mathbb{Z}\}$. However, this would require a proof that no element of \mathcal{F} is a subset of any element of \mathcal{G} and vice versa; while in the smaller counterexample this could be checked by inspection. If possible, finite counterexamples are often easier to verify.]