
Math 8
Worksheet 10

Proofs IV

1: Prove the following:

(a) (Velleman pg. 135 n. 21) Suppose F and G are families of sets. If
⋃
F *

⋃
G, then there is some A ∈ F

such that for all B ∈ G, A* B.

(b) (Velleman pg. 134 n. 12) For all x ∈ R, x , 1 is equivalent to there being y ∈ R such that x+ y = xy.

(c) Suppose |x − 1| < 1. Then x > 0.

(d) If 3 | n, then the remainder of n÷ 6 is either 0 or 3.

(a) Since
⋃
F *

⋃
G, there is some x ∈

⋃
F such that x <

⋃
G. Since x ∈

⋃
F , there is some A ∈ F such that x ∈ A.

Let B ∈ G be arbitrary. Since x <
⋃
G, x < B, so in particular A* B.

[An important note here is that we produced the set A before we chose B: it’s important that A does not
depend on B, so this order is important.]

(b) We start by showing if x , 1 there is y ∈ R such that x + y = xy. Let y = x
x−1 (this is well-defined because

x , 1). Then

x+ y =
x(x − 1) + x

x − 1
=

x2

x − 1
= x

( x
x − 1

)
= xy.

Now we show if x = 1, for all y ∈ R, x+ y , xy. In fact, x+ y = 1 + y, while xy = y. Since 1 + y , y, x+ y , xy.

[Note that we simply presented y in the first direction, and then proved it worked, rather than deriving it in
the proof.]

(c) First suppose x − 1 ≥ 0. Then x ≥ 1 > 0, so x > 0. Otherwise, suppose x − 1 < 0. Then |x − 1| = −(x − 1) = 1− x.
Then 1 − x < 1; adding x and subtracting 1 from both sides gives 0 < x. Since our cases for x − 1 were
exhaustive, we conclude that x > 0.

(d) Since 3 | n, we can write n = 3k for some integer k. If k is even, we can write k = 2j for some integer j, so
n = 6j. Then the remainder of n÷ 6 is zero. Otherwise, if k is odd, we can write k = 2j + 1 for some integer j,
so n = 6j + 3. Then the remainder of n÷6 is three. Our cases were exhaustive, so the remainder is either zero
or three.
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2: Give a counterexample to the following “theorems”.

(a) If a, b, and c are real numbers, the polynomial ax2 + 2bx+ c has two distinct real roots.

(b) Suppose x , 0 is given. Then for any real number y, there exists a real number z such that z2 < x+ y.

(c) If
⋃
F ⊆

⋃
G, then there exists some A ∈ F and B ∈ G such that either A ⊆ B or B ⊆ A.

(a) If a = b = c = 0, the polynomial ax2 + 2bx + c = 0 for all x, so it has more than two roots. Alternately, if a = 1,
b = 0, and c = 1, the polynomial ax2 + 2bx+ c = x2 + 1 ≥ 1 for all x, so it has no real roots. Alternately, if a = 0,
b = 1, and c = 0, the polynomial ax2 + 2bx + c = 2x has a unique root at x = 0. Any of these three satisfy the
requirements.

[Note: we can create families of counterexamples along these lines: if b = 0 and a and c are both positive, we
have the second situation, and if a = 0, b , 0 we have the third. However, without choosing some particular
value for all the constants a, b, and c, we don’t have a counterexample. Sometimes this causes serious
problems: if we just specified that b = 0 to get to the second situation, we could get polynomials like x2 − 1,
which do have two distinct real roots.]

(b) Here, we think of x as something we cannot choose, so our counterexample is some choice of y that can
depend on x. For example, we can take y = −x; then x+y = 0. Since z2 ≥ 0 for all real z, there is no z as in the
theorem.

[Note: nowhere do we use that x , 0. This isn’t a problem; sometimes theorems have stronger requirements
than are actually needed.]

(c) Here we need to give families F and G such that all choices of A and B do not satisfy the theorem. One way
to do this is to put F = {{1,2}} and G = {{1,3} , {2,3}}. Then

⋃
F = {1,2}, and

⋃
G = {1,2,3}, so

⋃
F ⊆

⋃
G, so

the theorem should apply. However, the set {1,2} ∈ F is not a subset of either {1,3} or {2,3}, and neither set
in G can be a subset of it, because it doesn’t include 3.

[Note: here, we have a particularly simple counterexample. We could also do something like setting F =
{{i, i + 1} : i ∈ Z} and G = {{i, i + 2} : i ∈ Z}. However, this would require a proof that no element of F is a subset
of any element of G and vice versa; while in the smaller counterexample this could be checked by inspection.
If possible, finite counterexamples are often easier to verify.]
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