Proofs V

1: Prove the following:
(a) If n^{2} is odd, then $n^{2}-1$ is divisible by 8 .
(b) If p and q are prime, $p \mid n$, and $q \mid n$, then $p q \mid n$.
[You may use without proof the fact that if $p \mid a b$ and p is prime, then $p \mid a$ or $p \mid b$. Is this true if p and q can be any integers?]
(c) For any real number $x,|x| \leq 1+x^{2}$. [Consider cases based on $|x|$.]
(d) For any real number $x,|x| \leq \frac{1}{2}\left(1+x^{2}\right)$. [As scratch work, consider manipulating the desired inequality to recognize a non-negative quantity.]

2: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if

$$
(\forall x)(\forall \epsilon>0)(\exists \delta>0)(|y-x|<\delta \Longrightarrow|f(y)-f(x)|<\epsilon)
$$

Prove that if $g: \mathbb{R} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ are both continuous, then the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x)=f(g(x))$ is continuous.

