1: Prove the following:

- (a) If n^2 is odd, then $n^2 1$ is divisible by 8.
- (b) If p and q are prime, $p \mid n$, and $q \mid n$, then $pq \mid n$.
 - [You may use without proof the fact that if $p \mid ab$ and p is prime, then $p \mid a$ or $p \mid b$. Is this true if p and q can be any integers?]
- (c) For any real number x, $|x| \le 1 + x^2$. [Consider cases based on |x|.]
- (d) For any real number x, $|x| \le \frac{1}{2}(1 + x^2)$. [As scratch work, consider manipulating the desired inequality to recognize a non-negative quantity.]

2: A function $f : \mathbb{R} \to \mathbb{R}$ is *continuous* if

$$(\forall x)(\forall \epsilon > 0)(\exists \delta > 0)(|y - x| < \delta \implies |f(y) - f(x)| < \epsilon).$$

Prove that if $g : \mathbb{R} \to \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ are both continuous, then the function $h : \mathbb{R} \to \mathbb{R}$ defined by h(x) = f(g(x)) is continuous.