Proofs V

1: Prove the following:
(a) If n^{2} is odd, then $n^{2}-1$ is divisible by 8 .
(b) If p and q are prime, $p \mid n$, and $q \mid n$, then $p q \mid n$.
[You may use without proof the fact that if $p \mid a b$ and p is prime, then $p \mid a$ or $p \mid b$. Is this true if p and q can be any integers?]
(c) For any real number $x,|x| \leq 1+x^{2}$. [Consider cases based on $|x|$.]
(d) For any real number $x,|x| \leq \frac{1}{2}\left(1+x^{2}\right)$. [As scratch work, consider manipulating the desired inequality to recognize a non-negative quantity.]
(a) Supposing n^{2} is odd, we have previously shown n must be odd. Thus, $n=2 k+1$ for some integer k, so $n^{2}=4 k^{2}+4 k+1$. Then $n^{2}-1=4 k(k+1)$. We have also shown that for all integers k, two divides $k(k+1)$. So, $k(k+1)=2 j$ for some integer j, so $n^{2}-1=4(2 j)=8 j$. Thus, if n^{2} is odd, $n^{2}-1$ is divisible by 8 .
(b) Suppose p and q are prime numbers dividing n. Since $p \mid n$, we know that $n=p k$ for some integer k. Then $q \mid p k$, so $q \mid p$ or $q \mid k$. Since p is prime, $q \nmid p$, so $q \mid k$. Then $k=q j$ for some integer j, so $n=p q j$. Thus, $p q$ divides n.
(c) If $|x| \leq 1$, since $x^{2} \geq 0$ we have $|x| \leq 1+x^{2}$. Otherwise, we have $|x|>1$, so $x^{2}=|x|^{2}=|x| \cdot|x|>|x|$, so $|x| \leq 1+x^{2}$. In both cases, $|x| \leq 1+x^{2}$.
(d) We know that $0 \leq(1-|x|)^{2}=1-2|x|+|x|^{2}$. Adding $2|x|$ to both sides gives $2|x| \leq 1+|x|^{2}$, and $|x|^{2}=x^{2}$, so $2|x| \leq 1+x^{2}$. Dividing by two gives $|x| \leq \frac{1}{2}\left(1+x^{2}\right)$.

2: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if

$$
(\forall x)(\forall \epsilon>0)(\exists \delta>0)(|y-x|<\delta \Longrightarrow|f(y)-f(x)|<\epsilon)
$$

Prove that if $g: \mathbb{R} \rightarrow \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ are both continuous, then the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x)=f(g(x))$ is continuous.

Fix $x \in \mathbb{R}$ and $\epsilon>0$. Let $z=g(x)$. Since f is continuous, there exists $\gamma>0$ such that if $|w-z|<\gamma$, then $|f(w)-f(z)|<\epsilon$. Since g is continuous, there exists $\delta>0$ such that if $|y-x|<\delta$, then $|g(y)-g(x)|<\gamma$. So, if $|y-x|<\delta$, then $|g(y)-g(x)|=|g(y)-z|<\gamma$, so $|f(g(y))-f(z)|=|h(y)-h(x)|<\epsilon$. This works for any x and ϵ, so h is continuous.

