1: Prove the following:

- (a) If n^2 is odd, then $n^2 1$ is divisible by 8.
- (b) If p and q are prime, $p \mid n$, and $q \mid n$, then $pq \mid n$.
 - [You may use without proof the fact that if $p \mid ab$ and p is prime, then $p \mid a$ or $p \mid b$. Is this true if p and q can be any integers?]
- (c) For any real number x, $|x| \le 1 + x^2$. [Consider cases based on |x|.]
- (d) For any real number x, $|x| \le \frac{1}{2}(1 + x^2)$. [As scratch work, consider manipulating the desired inequality to recognize a non-negative quantity.]
- (a) Supposing n^2 is odd, we have previously shown n must be odd. Thus, n = 2k + 1 for some integer k, so $n^2 = 4k^2 + 4k + 1$. Then $n^2 1 = 4k(k + 1)$. We have also shown that for all integers k, two divides k(k + 1). So, k(k + 1) = 2j for some integer j, so $n^2 1 = 4(2j) = 8j$. Thus, if n^2 is odd, $n^2 1$ is divisible by 8.
- (b) Suppose p and q are prime numbers dividing n. Since p | n, we know that n = pk for some integer k. Then q | pk, so q | p or q | k. Since p is prime, q ∤ p, so q | k. Then k = qj for some integer j, so n = pqj. Thus, pq divides n.
- (c) If $|x| \le 1$, since $x^2 \ge 0$ we have $|x| \le 1 + x^2$. Otherwise, we have |x| > 1, so $x^2 = |x|^2 = |x| \cdot |x| > |x|$, so $|x| \le 1 + x^2$. In both cases, $|x| \le 1 + x^2$.
- (d) We know that $0 \le (1 |x|)^2 = 1 2|x| + |x|^2$. Adding 2|x| to both sides gives $2|x| \le 1 + |x|^2$, and $|x|^2 = x^2$, so $2|x| \le 1 + x^2$. Dividing by two gives $|x| \le \frac{1}{2}(1 + x^2)$.

2: A function $f : \mathbb{R} \to \mathbb{R}$ is *continuous* if

$$(\forall x)(\forall \epsilon > 0)(\exists \delta > 0)(|y - x| < \delta \implies |f(y) - f(x)| < \epsilon).$$

Prove that if $g : \mathbb{R} \to \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ are both continuous, then the function $h : \mathbb{R} \to \mathbb{R}$ defined by h(x) = f(g(x)) is continuous.

Fix $x \in \mathbb{R}$ and $\epsilon > 0$. Let z = g(x). Since f is continuous, there exists $\gamma > 0$ such that if $|w-z| < \gamma$, then $|f(w) - f(z)| < \epsilon$. Since g is continuous, there exists $\delta > 0$ such that if $|y-x| < \delta$, then $|g(y) - g(x)| < \gamma$. So, if $|y-x| < \delta$, then $|g(y) - g(x)| = |g(y) - z| < \gamma$, so $|f(g(y)) - f(z)| = |h(y) - h(x)| < \epsilon$. This works for any x and ϵ , so h is continuous.