Induction

The Principle of Mathematical Induction is a way to prove an ordered sequence of statements of the form $P(n)$ dependent on a variable $n \in \mathbb{N}$. An inductive proof has two steps: a base case and an inductive step.

The base case is the statement $P\left(n_{0}\right)$ for some particular n_{0} (often but not always 0 or 1): we are establishing some true fact about a (hopefully simple) first case.

The inductive step is the implication $P(n) \Longrightarrow P(n+1)$: we are establishing a tool that we can use to push our knowledge about early cases forward to later ones. Then we know for all $N \in \mathbb{N}$ that $P(N)$ is true, because we start with $P\left(n_{0}\right)$ and apply the inductive step to get

$$
P\left(n_{0}\right) \Longrightarrow P\left(n_{0}+1\right) \Longrightarrow P\left(n_{0}+2\right) \Longrightarrow \cdots \Longrightarrow P(N-1) \Longrightarrow P(N)
$$

1: Prove the following:

(a) (Velleman pg. 235 n. 3) For all $n \in \mathbb{N}$, the sum $\sum_{k=0}^{n} k^{3}=0^{3}+1^{3}+\cdots+n^{3}=\left[\frac{1}{2} n(n+1)\right]^{2}$.
(b) Given a prime p, for all $n \in \mathbb{N}, p$ divides one of the elements of $S_{n}=\{n, n+1, \ldots, n+(p-1)\}$.
(c) Prove that for all real numbers $x \neq 1$ and all natural numbers $n, \sum_{k=0}^{n} x^{k}=1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}$.
(a) Our base case here is $n=0$, where both sides of the equation are 0 . For our inductive step, we will assume that $\sum_{k=0}^{n} k^{3}=\left[\frac{1}{2} n(n+1)\right]^{2}$. Now, $\sum_{k=0}^{n+1} k^{3}=\sum_{k=0}^{n} k^{3}+(n+1)^{3}$. Using our assumption, this is equal to $\left[\frac{1}{2} n(n+1)\right]^{2}+$ $(n+1)^{3}$. Factoring out $(n+1)^{2}$ and putting everything over a common denominator gives $(n+1)^{2}\left[\frac{n^{2}+4 n+4}{4}\right]=$ $\left[\frac{1}{2}(n+1)(n+2)\right]^{2}$. Thus, by the Principle of Mathematical Induction, $\sum_{k=0}^{n} k^{3}=\left[\frac{1}{2} n(n+1)\right]^{2}$ for all $n \in \mathbb{N}$. (As an interesting fact, this shows that $\sum_{k=0}^{n} k^{3}=\left[\sum_{k=0}^{n} k\right]^{2}$ for all $n \in \mathbb{N}$.)
(b) Our base case here is $n=0$, for which $p \mid 0$. For our inductive step, we will assume p divides an element of $S_{n}=\{n, n+1, \ldots, n+(p-1)\}$. Consider the set $S_{n+1}=\{n+1,(n+1)+1, \ldots,[n+(p-1)]+1\}=\{n+1, n+2, \ldots, n+p\}$. If p divided an element of $\{n+1, n+2, \ldots, n+(p-1)\}$ in the inductive hypothesis, that element is in S_{n+1}, so we're done. Otherwise, $p \mid n$, so $n=p k$ for some k, so $n+p=p(k+1)$, so $p \mid n+p$. In both cases, p divides an element of S_{n+1}. Thus, for all $n \in \mathbb{N}, p$ divides an element of S_{n+1}.
(c) Let $x \neq 1$ be arbitrary. For $n=0$, we have $1=\frac{1-x}{1-x}=1$. Suppose $\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}$. Then

$$
\sum_{k=0}^{n+1} x^{k}=\sum_{k=0}^{n} x^{k}+x^{n+1}=\frac{1-x^{n+1}}{1-x}+x^{n+1}=\frac{1-x^{n+1}+x^{n+1}-x^{n+2}}{1-x}=\frac{1-x^{n+2}}{1-x}
$$

Thus, for all $x \neq 1$ and $n \in \mathbb{N}$, we have $\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}$.

2: What is wrong with the following proof that everyone in the room has the same name?
Proof: We will induct on the number n of people in the room. Set $P(n)$ to mean "for any n people in the room, they all have the same name". We will use $n=1$ as our base case; certainly $P(1)$ is true, as a person has a single name. Suppose $P(n)$ is true. Given n people $p_{1}, p_{2}, \ldots, p_{n}, p_{n+1}$, we apply $P(n)$ to the first n people to conclude name $\left(p_{1}\right)=\operatorname{name}\left(p_{2}\right)=\cdots=\operatorname{name}\left(p_{n}\right)$, and again to the last n people to conclude $\operatorname{name}\left(p_{2}\right)=\cdots=\operatorname{name}\left(p_{n}\right)=\operatorname{name}\left(p_{n+1}\right)$. Then by the transitive property of equality,

$$
\operatorname{name}\left(p_{1}\right)=\operatorname{name}\left(p_{2}\right)=\cdots=\operatorname{name}\left(p_{n}\right)=\operatorname{name}\left(p_{n+1}\right),
$$

proving $P(n+1)$. By the Principle of Mathematical Induction, then, no matter how many people are in the room, they all have the same name.

The proof of the inductive step breaks down for $P(2)$: the names of everyone in the set $\left\{p_{1}\right\}$ are equal (there's only one), and in the set $\left\{p_{2}\right\}$ are equal. However, we can't use the transitive property of equality to show that name $\left(p_{1}\right)=$ name $\left(p_{2}\right)$, because there's no link between the two sets $\left(\left\{p_{1}\right\} \cap\left\{p_{2}\right\}=\emptyset\right.$, unlike for any $\left.n>2\right)$. So the proof of the inductive step fails.

