
Math 8
Worksheet 12

Induction
The Principle of Mathematical Induction is a way to prove an ordered sequence of statements of the form P (n)

dependent on a variable n ∈ N. An inductive proof has two steps: a base case and an inductive step.
The base case is the statement P (n0) for some particular n0 (often but not always 0 or 1): we are establishing

some true fact about a (hopefully simple) first case.
The inductive step is the implication P (n) =⇒ P (n+ 1): we are establishing a tool that we can use to push our

knowledge about early cases forward to later ones. Then we know for all N ∈ N that P (N ) is true, because we start
with P (n0) and apply the inductive step to get

P (n0) =⇒ P (n0 + 1) =⇒ P (n0 + 2) =⇒ ·· · =⇒ P (N − 1) =⇒ P (N ).

1: Prove the following:

(a) (Velleman pg. 235 n. 3) For all n ∈ N, the sum
n∑

k=0
k3 = 03 + 13 + · · ·+n3 =

[
1
2n(n+ 1)

]2
.

(b) Given a prime p, for all n ∈ N, p divides one of the elements of Sn = {n,n+ 1, . . . ,n+ (p − 1)}.

(c) Prove that for all real numbers x , 1 and all natural numbers n,
n∑

k=0
xk = 1 + x+ x2 + · · ·+ xn = 1−xn+1

1−x .

(a) Our base case here is n = 0, where both sides of the equation are 0. For our inductive step, we will assume

that
n∑

k=0
k3 =

[
1
2n(n+ 1)

]2
. Now,

n+1∑
k=0

k3 =
n∑

k=0
k3 + (n+ 1)3. Using our assumption, this is equal to

[
1
2n(n+ 1)

]2
+

(n+ 1)3. Factoring out (n+ 1)2 and putting everything over a common denominator gives (n+ 1)2
[
n2+4n+4

4

]
=[

1
2 (n+ 1)(n+ 2)

]2
. Thus, by the Principle of Mathematical Induction,

n∑
k=0

k3 =
[

1
2n(n+ 1)

]2
for all n ∈ N. (As an

interesting fact, this shows that
n∑

k=0
k3 =

[
n∑

k=0
k

]2

for all n ∈ N.)

(b) Our base case here is n = 0, for which p | 0. For our inductive step, we will assume p divides an element of
Sn = {n,n+ 1, . . . ,n+ (p − 1)}. Consider the set Sn+1 = {n+ 1, (n+ 1) + 1, . . . , [n+ (p − 1)] + 1} = {n+ 1,n+ 2, . . . ,n+ p}.
If p divided an element of {n+ 1,n+ 2, . . . ,n+ (p − 1)} in the inductive hypothesis, that element is in Sn+1, so
we’re done. Otherwise, p | n, so n = pk for some k, so n+ p = p(k + 1), so p | n+ p. In both cases, p divides an
element of Sn+1. Thus, for all n ∈ N, p divides an element of Sn+1.

(c) Let x , 1 be arbitrary. For n = 0, we have 1 = 1−x
1−x = 1. Suppose

n∑
k=0

xk = 1−xn+1

1−x . Then

n+1∑
k=0

xk =
n∑

k=0

xk + xn+1 =
1− xn+1

1− x
+ xn+1 =

1− xn+1 + xn+1 − xn+2

1− x
=

1− xn+2

1− x
.

Thus, for all x , 1 and n ∈ N, we have
n∑

k=0
xk = 1−xn+1

1−x .
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2: What is wrong with the following proof that everyone in the room has the same name?
Proof: We will induct on the number n of people in the room. Set P (n) to mean “for any n people in

the room, they all have the same name”. We will use n = 1 as our base case; certainly P (1) is true, as a
person has a single name. Suppose P (n) is true. Given n people p1,p2, . . . ,pn,pn+1, we apply P (n) to the
first n people to conclude name(p1) = name(p2) = · · · = name(pn), and again to the last n people to conclude
name(p2) = · · · = name(pn) = name(pn+1). Then by the transitive property of equality,

name(p1) = name(p2) = · · · = name(pn) = name(pn+1),

proving P (n + 1). By the Principle of Mathematical Induction, then, no matter how many people are in the
room, they all have the same name.

The proof of the inductive step breaks down for P (2): the names of everyone in the set {p1} are equal (there’s
only one), and in the set {p2} are equal. However, we can’t use the transitive property of equality to show that
name(p1) = name(p2), because there’s no link between the two sets ({p1} ∩ {p2} = ∅, unlike for any n > 2). So the
proof of the inductive step fails.
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