
Math 8
Worksheet 13

Strong Induction
Strong Induction is a variant on induction, where as an inductive hypothesis, instead of assuming the previous

case holds, we assume all previous cases hold. That is, we show the statement [(∀k < n)(P (k))] =⇒ P (n).
Alternatively, we can think of this as ¬P (n) =⇒ [(∃k < n)(¬P (k))]. That is, if case n is a counterexample to the

theorem, there must be some previous counterexample.
Sometimes, we can do this without using specific properties of the cases k, at which point we don’t need a base

case. This is especially true if we use the counterexample formalism. Of course, it might not be true that we are
able to show this with no properties, and may need one or more base cases (if, for example, we used an element of
a strictly smaller subset in our proof, we would have to show the property directly for one element sets).

1: Prove the following:

(a) Suppose an+2 = 5an+1 − 6an. Show that if a1 = 1 and a0 = 0, then an = 3n − 2n for all n ∈ N.

(b) (Well-Ordering Principle) Every nonempty subset of the natural numbers has a least element.

(c) Suppose φ is a function of integers greater than one such that φ(nm) = φ(n)φ(m), and for all primes p,
φ(p) < p. Prove for all n > 1 that φ(n) < n.

(d) Every positive integer n > 1 has the form s2t, where s is a positive integer and t is square-free (for all
primes p, p2 - t).

(a) Here, we need the two given base cases (indeed, 0 = 30 − 20, and 1 = 31 − 21, so they are true). Suppose the
formula holds for all 0 ≤ k < n. Then

an = 5an−1 − 6an−2 = 5(3n−1 − 2n−1)− 6(3n−2 − 2n−2) = (15− 6)3n−2 − (10− 6)2n−2 = 3n − 2n.

In fact, we only needed the formula to hold for the two previous cases, but we still phrase this using strong
induction.

(b) Suppose S ⊂ N has no smallest element. Now, suppose n ∈ S and for all k < n, k < S. Then n is the smallest
element of S, a contradiction. Thus, S = ∅.

(c) Suppose n > 1 and for 1 < k < n, φ(k) < k. If n is prime, then φ(n) < n by definition. Otherwise, n = ab
for 1 < a < n and 1 < b < n. Then φ(n) = φ(a)φ(b) < aφ(b) < ab = n by inductive hypothesis. In both cases,
φ(n) < n.

(d) Suppose n > 1 and for all 1 < k < n, k is the product of a square and a square-free integer. If n is prime, then
n is square-free, so we’re done. Otherwise, n = ab for integers 1 < a < n, 1 < b < n.

Write a = s2a ta and b = s2b tb with ta and tb square-free, and let d = gcf(ta, tb). Then we have ta = dTa and
tb = dTb, and gcf(Ta,Tb) = 1. Then n = (sasbd)2TaTb. Let s = sasbd and t = TaTb. Then t is square-free, because
Ta and Tb are square-free and they share no common factors. So n = s2t for s an integer and t square-free.
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2 (Recursion): Suppose there are 2n students in a course, and the TA needs to alphabetize their homeworks
to enter the grades on Gauchospace. Show that, if an “operation” is either dividing a stack of homeworks in
two or combining two sorted stacks into one sorted stack, alphabetizing the homeworks can be done in 2n+1−2
operations.

LetN (k) be the number of operations needed to sort a stack of 2k homeworks. Since a stack with a single homework
is a sorted stack, N (0) = 0. So sort a stack of 2k homeworks, one can divide the stack in two with an operation, sort
two stacks of 2k−1 homeworks with N (k − 1) operations, then combine the sorted stacks with another operation.
So, N (k) = 2 + 2N (k − 1). Suppose inductively that N (k − 1) = 2k − 2. Then N (k) = 2 + 2k+1 − 4 = 2k+1 − 2. So, by the
Principle of Induction, N (n) = 2n+1 − 2.
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