Relations

A relation between two sets X and Y is a subset of their product: $R \subseteq X \times Y$. That is, R consists of pairs of elements, one from X and one from Y. It can be helpful to write $x R y$ to mean $(x, y) \in R$, to clarify our intuition that such elements are related.

The domain of a relation is $\operatorname{Dom}(R)=\{x \in X:(\exists y \in Y)(x R y)\}$, and the range is $\operatorname{Ran}(R)=\{y \in Y:(\exists x \in X)(x R y)\}$. The inverse of a relation is $R^{-1}=\{(y, x) \in Y \times X: x R y\}$, and the composition of relations $R \subseteq X \times Y$ and $S \subseteq Y \times Z$ is the relation $S \circ R=\{(x, z) \in X \times Z:(\exists y \in Y)(x R y \wedge y S z)\}$.

1: If $R \subset \mathbb{R} \times \mathbb{Z}$ is the relation defined by $x R n$ iff $|x| \leq n$ and $S \subset \mathbb{R} \times \mathbb{Z}$ is the relation defined by $x S n$ iff $x<n$, describe the following relations and find their domain and range.
(a) R^{-1}
(c) $R \circ R^{-1}$
(e) $R \circ S^{-1}$
(g) $S \circ S^{-1}$
(b) S^{-1}
(d) $R^{-1} \circ R$
(f) $S \circ R^{-1}$
(h) $S^{-1} \circ S$

2: Prove the following:
(a) If R is a relation, then $\operatorname{Ran}\left(R^{-1}\right)=\operatorname{Dom}(R)$.
(b) If $R \subseteq X \times Y$ and $S \subseteq X \times Y$, then $\{(x, y) \in X \times Y: x R y \wedge x S y\}$ is a relation from X to Y.
(c) In the situation above, $(R \cap S)^{-1}=R^{-1} \cap S^{-1}$.

