Relations II

A relation $R \subseteq X \times X$ is *reflexive* if for all $x \in X$, xRx. It is *symmetric* if for all $(x, y) \in R$, yRx. It is *transitive* if xRy and yRz implies xRz.

1: Prove or disprove the following statements. If they are false, can you find additional conditions to make them true?

- (a) If *R* is transitive and $x_1, x_2, ..., x_n$ are such that $x_i R x_{i+1}$ for i = 1, ..., n-1 (that is, $x_1 R x_2, x_2 R x_3, ..., x_{n-1} R x_n$), then $x_1 R x_n$.
- (b) (Velleman pg. 187 n. 13) If R_1 and R_2 are symmetric, then $R_1 \cup R_2$ is symmetric.
- (c) (Velleman pg. 189 n. 22) If *R* is symmetric and transitive, then *R* is reflexive.

2: Are the following relations reflexive? symmetric? transitive?

- (a) In any *X*, xRy iff $x \neq y$.
- (b) In \mathbb{Z} , nRm iff $n \mid m$.
- (c) In \mathbb{R}^2 , $\mathbf{x}R\mathbf{y}$ iff det $(\begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix}) \ge 0$.
- (d) For some *X* with a distinguished point $x \in X$, the relation on $\mathscr{P}(X)$ defined by *ARB* iff $x \in A \cap B$.
- (e) For some X, the relation on $\mathscr{P}(X)$ defined by ARB iff $(A \cup B) \setminus (A \cap B) = \emptyset$.