Relations II

A relation $R \subseteq X \times X$ is reflexive if for all $x \in X, x R x$. It is symmetric if for all $(x, y) \in R, y R x$. It is transitive if $x R y$ and $y R z$ implies $x R z$.

1: Prove or disprove the following statements. If they are false, can you find additional conditions to make them true?
(a) If R is transitive and $x_{1}, x_{2}, \ldots, x_{n}$ are such that $x_{i} R x_{i+1}$ for $i=1, \ldots, n-1$ (that is, $x_{1} R x_{2}, x_{2} R x_{3}, \ldots, x_{n-1} R x_{n}$), then $x_{1} R x_{n}$.
(b) (Velleman pg. 187 n . 13) If R_{1} and R_{2} are symmetric, then $R_{1} \cup R_{2}$ is symmetric.
(c) (Velleman pg. 189 n . 22) If R is symmetric and transitive, then R is reflexive.

2: Are the following relations reflexive? symmetric? transitive?
(a) In any $X, x R y$ iff $x \neq y$.
(b) In $\mathbb{Z}, n R m$ iff $n \mid m$.
(c) In $\mathbb{R}^{2}, \mathbf{x} R \mathbf{y}$ iff $\operatorname{det}\left(\left[\begin{array}{ll}\mathbf{x} & \mathbf{y}\end{array}\right]\right) \geq 0$.
(d) For some X with a distinguished point $x \in X$, the relation on $\mathscr{P}(X)$ defined by $A R B$ iff $x \in A \cap B$.
(e) For some X, the relation on $\mathscr{P}(X)$ defined by $A R B$ iff $(A \cup B) \backslash(A \cap B)=\emptyset$.

