Equivalence Relations

An *equivalence relation* is a reflexive, symmetric, and transitive relation. It defines a *partition* of the set X it is defined on: X is divided into subsets such that every element is in exactly one subset (the subsets are disjoint and cover all of X). We denote the subset containing $x \in X$ by [x], and call it the *equivalence class* of X.

- **1:** Prove the following statements:
 - (a) Suppose *R* is an equivalence relation on *X*. Define $S \subseteq \mathscr{P}(X) \times \mathscr{P}(X)$ by *ASB* iff for all $a \in A$, $b \in B$, *aRb*. Then *S* is an equivalence relation.
 - (b) Suppose *R* is an equivalence relation on *X*, and *S* is an equivalence relation on *X*/*R*. Prove there is a unique equivalence relation *T* on *X* such that *xTy* iff [*x*]_R*S*[*y*]_R, and that *R* ⊆ *T* and ∪[[*x*]_R]_S = [*x*]_T. [Essentially, we are showing that (*X*/*R*)/*S* "looks like" *X*/*T*.]
 - (c) Suppose *R* is an equivalence relation on *X*. Then there is a unique equivalence relation *T* on A/R such that [x]T[y] iff xRy.

[You may use the results of Velleman pg. 223 n. 13: if $A \subseteq B$ and R is an equivalence relation on A, then $S = R \cap (B \times B)$ is an equivalence relation on B with $[x]_S = [x]_R \cap B$. This is a special case of Velleman pg. 225 n. 23.]

2: Are the following equivalence relations?

- (a) On M_n ($n \times n$ matrices), the relation $R = \{(A, B) : \{\text{eigenvalues of } A\} = \{\text{eigenvalues of } B\}\}$.
- (b) On \mathbb{N}^+ , the relation $R = \{(m, n) : m \text{ and } n \text{ have the same number of distinct prime factors} \}$.
- (c) On \mathbb{Z} , for fixed odd prime *p* the relation $R_p = \{(m, n) : p \mid (m + n)\}.$
- (d) On \mathbb{R}^2 , the relation $R = \left\{ \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right) : x_1 = y_1 \lor x_2 = y_2 \right\}.$