Equivalence Relations

An equivalence relation is a reflexive, symmetric, and transitive relation. It defines a partition of the set X it is defined on: X is divided into subsets such that every element is in exactly one subset (the subsets are disjoint and cover all of X). We denote the subset containing $x \in X$ by $[x]$, and call it the equivalence class of X.

1: Prove the following statements:
(a) Suppose R is an equivalence relation on X. Define $S \subseteq \mathscr{P}(X) \times \mathscr{P}(X)$ by $A S B$ iff for all $a \in A, b \in B, a R b$. Then S is an equivalence relation.
(b) Suppose R is an equivalence relation on X, and S is an equivalence relation on X / R. Prove there is a unique equivalence relation T on X such that $x T y$ iff $[x]_{R} S[y]_{R}$, and that $R \subseteq T$ and $\bigcup\left[[x]_{R}\right]_{S}=[x]_{T}$.
[Essentially, we are showing that $(X / R) / S$ "looks like" X / T.]
(c) Suppose R is an equivalence relation on X. Then there is a unique equivalence relation T on A / R such that $[x] T[y]$ iff $x R y$.
[You may use the results of Velleman pg. 223 n . 13: if $A \subseteq B$ and R is an equivalence relation on A, then $S=R \cap(B \times B)$ is an equivalence relation on B with $[x]_{S}=[x]_{R} \cap B$. This is a special case of Velleman pg. 225 n .23 .]

2: Are the following equivalence relations?
(a) On $M_{n}(n \times n$ matrices $)$, the relation $R=\{(A, B):\{$ eigenvalues of $A\}=\{$ eigenvalues of $B\}\}$.
(b) On \mathbb{N}^{+}, the relation $R=\{(m, n): m$ and n have the same number of distinct prime factors $\}$.
(c) On \mathbb{Z}, for fixed odd prime p the relation $R_{p}=\{(m, n): p \mid(m+n)\}$.
(d) On \mathbb{R}^{2}, the relation $R=\left\{\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right],\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]\right): x_{1}=y_{1} \vee x_{2}=y_{2}\right\}$.

