Equivalence Relations

An equivalence relation is a reflexive, symmetric, and transitive relation. It defines a partition of the set X it is defined on: X is divided into subsets such that every element is in exactly one subset (the subsets are disjoint and cover all of X). We denote the subset containing $x \in X$ by $[x]$, and call it the equivalence class of X.

1: Prove the following statements:
(a) Suppose R is an equivalence relation on X. Define $S \subseteq X / R \times X / R$ by $A S B$ iff for all $a \in A, b \in B$, $a R b$. Then S is an equivalence relation.
(b) Suppose R is an equivalence relation on X, and S is an equivalence relation on X / R. Prove there is a unique equivalence relation T on X such that $x T y$ iff $[x]_{R} S[y]_{R}$, and that $R \subseteq T$ and $\cup\left[[x]_{R}\right]_{S}=[x]_{T}$.
[Essentially, we are showing that $(X / R) / S$ "looks like" X / T.]
(c) Suppose R is an equivalence relation on X. Then there is a unique equivalence relation T on A / R such that $[x] T[y]$ iff $x R y$.
[You may use the results of Velleman pg. 223 n . 13: if $A \subseteq B$ and R is an equivalence relation on A, then $S=R \cap(B \times B)$ is an equivalence relation on B with $[x]_{S}=[x]_{R} \cap B$. This is a special case of Velleman pg. 225 n. 23.]
(a) We must check if S is reflexive, symmetric, and transitive. Suppose $A \in X / R$. Then for all $a \in A$, aRa because R is reflexive. So, $A S A$, so S is reflexive.
Suppose $A S B$, and let $a \in A, b \in B$ be arbitrary. By definition of $S, a R b$. Since R is symmetric, $b R a$. That is, because a and b were arbitrary, for all $b \in B, a \in A, b R a$. So, $B S A$, so S is symmetric.
Suppose $A S B$ and $B S C$. Let $a \in A, b \in B$, and $c \in C$ be arbitrary. By definition of S, we know $a R b$ and $b R c$. Since R is an equivalence relation, $a R c$. Since a and c were arbitrary, this shows $A S C$. Thus, S is transitive, hence an equivalence relation.
(b) For uniqueness, if T and T^{\prime} satisfy the requirements of the theorem, then

$$
x T y \Longleftrightarrow[x]_{R} S[y]_{R} \Longleftrightarrow x T^{\prime} y,
$$

so $T=T^{\prime}$, as their membership tests are equivalent.

For existence, define $T=\left\{(x, y) \in X \times X:[x]_{R} S[y]_{R}\right\}$. This is a relation; we must show it is an equivalence relation. It is reflexive, as for $x \in X$, we know $[x]_{R}=[x]_{R}$, so $[x]_{R} S[x]_{R}$ because S is reflexive, so $x T x$ by definition. It is symmetric, as if $x T y$, then $[x]_{R} S[y]_{R}$ by definition, so $[y]_{R} S[x]_{R}$ by symmetry of S, so $y T x$ by definition. Finally, it is transitive, because if $x T y$ and $y T z$, then $[x]_{R} S[y]_{R}$ and $[y]_{R} S[z]_{R}$ by definition, so because S is transitive $[x]_{R} S[z]_{R}$, so $x T z$ by definition.

Suppose $x R y$. Then $[x]_{R}=[y]_{R}$, so $[x]_{R} S[y]_{R}$ by reflexivity of S, so $x T y$. Thus, $x T y$. Since x and y were arbitrary, this shows $R \subseteq T$.

Since $[x]_{R} \in \mathscr{P}(X)$, we know $\left[[x]_{R}\right]_{S} \subset \mathscr{P}(X)$; that is, it is a family of subsets of X, so the union makes sense, and $\bigcup\left[[x]_{R}\right]_{S} \in \mathscr{P}(X)$.
Now, suppose $y \in \bigcup\left[[x]_{R}\right]_{S}$. Then there is some $[z]_{R} \in\left[[x]_{R}\right]_{S}$ such that $y \in[z]_{R}$, which means there is some $z \in X$ such that $[z]_{R} S[x]_{R}$ and $y R z$. But then $z T x$ and $y T z$ (because $R \subseteq T$), so $y T x$, or $y \in[x]_{T}$. Thus, $\bigcup\left[[x]_{R}\right]_{S} \subseteq[x]_{T}$.
On the other hand, suppose $y \in[x]_{T}$. Then $[y]_{R} S[x]_{R}$ by definition, so $[y]_{R} \in\left[[x]_{R}\right]_{S}$. Since $y \in[y]_{R}$, this shows $y \in \bigcup\left[[x]_{R}\right]_{S}$. Thus, $[x]_{T} \subseteq \bigcup\left[[x]_{R}\right]_{S}$, so they are equal.
(c) For uniqueness, suppose T and T^{\prime} are both equivalence relations on A / R as in the theorem. We have

$$
[x] T[y] \Longleftrightarrow x R y \Longleftrightarrow[x] T^{\prime}[y]
$$

so $T=T^{\prime}$ (their membership tests are logically equivalent). Thus, any such equivalence relation T is unique.

For existence, we have that $A / R \subset \mathscr{P}(X)$, so we can take S from the previous problem and create

$$
T=S \cap((A / R) \times(A / R)),
$$

an equivalence relation on A / R.
Suppose $[x] T[y]$ for $[x],[y] \in A / R$. Then by definition of $T,[x] S[y]$. Then for all $x^{\prime} \in[x]$ and $y^{\prime} \in[y], x^{\prime} R y^{\prime}$. In particular, $x R y$.
Now suppose $x R y$, and let $x^{\prime} \in[x], y^{\prime} \in[y]$ be arbitrary. Then $x^{\prime} R x, x R y$, and $y R y^{\prime}$, so by transitivity $x^{\prime} R y^{\prime}$. So, $[x] S[y]$, and in particular $[x] T[y]$ because both were equivalence classes. Thus, $[x] T[y]$ iff $x R y$, so a T as in the theorem exists.
In fact, there is a simpler description of T : it is the identity relation on A / R. To see this, we note that $[x]=[y]$ iff for all x^{\prime} and y^{\prime} with $x^{\prime} R x$ and $y^{\prime} R y, x^{\prime} R y^{\prime}$. In particular, $x R y$. Also, if $x R y$, then $[x]=[y]$ by transitivity.

2: Are the following equivalence relations?
(a) On $M_{n}(n \times n$ matrices $)$, the relation $R=\{(A, B):\{$ eigenvalues of $A\}=\{$ eigenvalues of $B\}\}$.
(b) On \mathbb{N}^{+}, the relation $R=\{(m, n): m$ and n have the same number of distinct prime factors $\}$.
(c) On \mathbb{Z}, for fixed odd prime p the relation $R_{p}=\{(m, n): p \mid(m+n)\}$.
(d) On \mathbb{R}^{2}, the relation $R=\left\{\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right],\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]\right): x_{1}=y_{1} \vee x_{2}=y_{2}\right\}$.
(a) Yes: it is reflexive, symmetric, and transitive by the reflexivity, symmetry, and transitivity of $=$.
(b) Yes: if $v: \mathbb{N}^{+} \rightarrow \mathbb{N}$ is the function giving the number of distinct prime factors of an integer, this is $m R n$ iff $v(m)=v(n)$. So, by reflexivity, symmetry, and transitivity of $=$, we have R is an equivalence relation.
(c) No: it is not reflexive; consider $m=p+1$. Then $m+m=2(p+1)$, and p does not divide 2 or $p+1$.
(d) No: $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is related to both $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 0\end{array}\right]$, but those two are not related, so it is not transitive.

