Equivalence Relations

An *equivalence relation* is a reflexive, symmetric, and transitive relation. It defines a *partition* of the set X it is defined on: X is divided into subsets such that every element is in exactly one subset (the subsets are disjoint and cover all of X). We denote the subset containing $x \in X$ by [x], and call it the *equivalence class* of X.

- 1: Prove the following statements:
 - (a) Suppose *R* is an equivalence relation on *X*. Define $S \subseteq X/R \times X/R$ by *ASB* iff for all $a \in A$, $b \in B$, *aRb*. Then *S* is an equivalence relation.
 - (b) Suppose *R* is an equivalence relation on *X*, and *S* is an equivalence relation on *X/R*. Prove there is a unique equivalence relation *T* on *X* such that *xTy* iff [*x*]_R*S*[*y*]_R, and that *R* ⊆ *T* and ∪[[*x*]_R]_S = [*x*]_T. [Essentially, we are showing that (*X/R*)/*S* "looks like" *X/T*.]
 - (c) Suppose *R* is an equivalence relation on *X*. Then there is a unique equivalence relation *T* on A/R such that [x]T[y] iff xRy.

[You may use the results of Velleman pg. 223 n. 13: if $A \subseteq B$ and R is an equivalence relation on A, then $S = R \cap (B \times B)$ is an equivalence relation on B with $[x]_S = [x]_R \cap B$. This is a special case of Velleman pg. 225 n. 23.]

(a) We must check if *S* is reflexive, symmetric, and transitive. Suppose $A \in X/R$. Then for all $a \in A$, *aRa* because *R* is reflexive. So, *ASA*, so *S* is reflexive.

Suppose *ASB*, and let $a \in A$, $b \in B$ be arbitrary. By definition of *S*, *aRb*. Since *R* is symmetric, *bRa*. That is, because *a* and *b* were arbitrary, for all $b \in B$, $a \in A$, *bRa*. So, *BSA*, so *S* is symmetric.

Suppose *ASB* and *BSC*. Let $a \in A$, $b \in B$, and $c \in C$ be arbitrary. By definition of *S*, we know *aRb* and *bRc*. Since *R* is an equivalence relation, *aRc*. Since *a* and *c* were arbitrary, this shows *ASC*. Thus, *S* is transitive, hence an equivalence relation.

(b) For uniqueness, if T and T' satisfy the requirements of the theorem, then

$$xTy \iff [x]_R S[y]_R \iff xT'y,$$

so T = T', as their membership tests are equivalent.

For existence, define $T = \{(x, y) \in X \times X : [x]_R S[y]_R\}$. This is a relation; we must show it is an equivalence relation. It is reflexive, as for $x \in X$, we know $[x]_R = [x]_R$, so $[x]_R S[x]_R$ because S is reflexive, so xTx by definition. It is symmetric, as if xTy, then $[x]_R S[y]_R$ by definition, so $[y]_R S[x]_R$ by symmetry of S, so yTx by definition. Finally, it is transitive, because if xTy and yTz, then $[x]_R S[y]_R$ and $[y]_R S[z]_R$ by definition, so because S is transitive $[x]_R S[z]_R$, so xTz by definition.

Suppose *xRy*. Then $[x]_R = [y]_R$, so $[x]_R S[y]_R$ by reflexivity of *S*, so *xTy*. Thus, *xTy*. Since *x* and *y* were arbitrary, this shows $R \subseteq T$.

Since $[x]_R \in \mathscr{P}(X)$, we know $[[x]_R]_S \subset \mathscr{P}(X)$; that is, it is a family of subsets of *X*, so the union makes sense, and $\bigcup [[x]_R]_S \in \mathscr{P}(X)$.

Now, suppose $y \in \bigcup[[x]_R]_S$. Then there is some $[z]_R \in [[x]_R]_S$ such that $y \in [z]_R$, which means there is some $z \in X$ such that $[z]_R S[x]_R$ and yRz. But then zTx and yTz (because $R \subseteq T$), so yTx, or $y \in [x]_T$. Thus, $\bigcup[[x]_R]_S \subseteq [x]_T$.

On the other hand, suppose $y \in [x]_T$. Then $[y]_R S[x]_R$ by definition, so $[y]_R \in [[x]_R]_S$. Since $y \in [y]_R$, this shows $y \in \bigcup [[x]_R]_S$. Thus, $[x]_T \subseteq \bigcup [[x]_R]_S$, so they are equal.

(c) For uniqueness, suppose T and T' are both equivalence relations on A/R as in the theorem. We have

$$[x]T[y] \longleftrightarrow xRy \iff [x]T'[y],$$

so T = T' (their membership tests are logically equivalent). Thus, any such equivalence relation T is unique.

For existence, we have that $A/R \subset \mathscr{P}(X)$, so we can take *S* from the previous problem and create

$$T = S \cap ((A/R) \times (A/R)),$$

an equivalence relation on A/R.

Suppose [x]T[y] for $[x], [y] \in A/R$. Then by definition of T, [x]S[y]. Then for all $x' \in [x]$ and $y' \in [y]$, x'Ry'. In particular, xRy.

Now suppose xRy, and let $x' \in [x]$, $y' \in [y]$ be arbitrary. Then x'Rx, xRy, and yRy', so by transitivity x'Ry'. So, [x]S[y], and in particular [x]T[y] because both were equivalence classes. Thus, [x]T[y] iff xRy, so a T as in the theorem exists.

In fact, there is a simpler description of *T*: it is the identity relation on *A*/*R*. To see this, we note that [x] = [y] iff for all *x*' and *y*' with *x*'*Rx* and *y*'*Ry*, *x*'*Ry*'. In particular, *xRy*. Also, if *xRy*, then [x] = [y] by transitivity.

2: Are the following equivalence relations?

- (a) On M_n ($n \times n$ matrices), the relation $R = \{(A, B) : \{\text{eigenvalues of } A\} = \{\text{eigenvalues of } B\}\}$.
- (b) On \mathbb{N}^+ , the relation $R = \{(m, n) : m \text{ and } n \text{ have the same number of distinct prime factors}\}$.
- (c) On \mathbb{Z} , for fixed odd prime *p* the relation $R_p = \{(m, n) : p \mid (m + n)\}$.

(d) On
$$\mathbb{R}^2$$
, the relation $R = \left\{ \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right) : x_1 = y_1 \lor x_2 = y_2 \right\}.$

- (a) Yes: it is reflexive, symmetric, and transitive by the reflexivity, symmetry, and transitivity of =.
- (b) Yes: if $v : \mathbb{N}^+ \to \mathbb{N}$ is the function giving the number of distinct prime factors of an integer, this is *mRn* iff v(m) = v(n). So, by reflexivity, symmetry, and transitivity of =, we have *R* is an equivalence relation.
- (c) No: it is not reflexive; consider m = p + 1. Then m + m = 2(p + 1), and p does not divide 2 or p + 1.
- (d) No: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is related to both $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, but those two are not related, so it is not transitive.