Functions I

A *function* $f : X \to Y$ is a relation from X to Y where each $x \in X$ has exactly one element $y \in Y$ such that $(x, y) \in f$. Usually, this is denoted y = f(x).

1: Prove the following statements:

(a) (Velleman pg 234 n 11c) Suppose $f : A \rightarrow B$ and S is a relation on B. Define

 $R = \{ (x, y) \in A : f(x)Sf(y) \}.$

Prove that if *S* is transitive, *R* is as well.

(b) Suppose *R* is a relation from *X* to *Y*. Prove that the relation *f* from *X* to $\mathscr{P}(Y)$ defined as

$$\{(x, B) : (\forall y \in Y) (xRy \iff y \in B)\}$$

is a function.

- **2:** Are the following functions?
 - (a) $\{(M, d) \in M_n \times \mathbb{R} : \det(M) = d\}$
- (b) $\{(x,y) \in \mathbb{R} \times \mathbb{R} : y = x^2\}$
- (c) $\{(y, x) \in \mathbb{R} \times \mathbb{R} : y = x^2\}$
- (d) $\{(y,x) \in \mathbb{R}^+ \times \mathbb{R} : y = x^2\}$
- (e) $f: X \to X/R$ where $f(x) = [x]_R$ where *R* is an equivalence relation
- (f) $f: X/R \to X$ where $f([x]_R) = x$ where *R* is an equivalence relation
- (g) $f: X/R \to Y/S$ where *R* and *S* are equivalence relations, $g: X \to Y$ is a function, and $f([x]_R) = [g(x)]_S$