Functions I

A function $f: X \rightarrow Y$ is a relation from X to Y where each $x \in X$ has exactly one element $y \in Y$ such that $(x, y) \in f$. Usually, this is denoted $y=f(x)$.

1: Prove the following statements:
(a) (Velleman pg 234 n 11 c) Suppose $f: A \rightarrow B$ and S is a relation on B. Define

$$
R=\{(x, y) \in A: f(x) S f(y)\}
$$

Prove that if S is transitive, R is as well.
(b) Suppose R is a relation from X to Y. Prove that the relation f from X to $\mathscr{P}(Y)$ defined as

$$
\{(x, B):(\forall y \in Y)(x R y \Longleftrightarrow y \in B)\}
$$

is a function.
(a) Suppose $x R y$ and $y R z$. Then $f(x) S f(y)$ and $f(y) S f(z)$. Since S is transitive, this implies $f(x) S f(z)$. By definition, this means $x R z$.
(b) We must show that for all x, if $(x, B) \in f$ and $\left(x, B^{\prime}\right) \in f$, then $B=B^{\prime}$. If $(x, B) \in f$ and $\left(x, B^{\prime}\right) \in f$, then $y \in B \Longleftrightarrow x R y \Longleftrightarrow y \in B^{\prime}$. Thus, $B=B^{\prime}$.

2: Are the following functions?
(a) $\left\{(M, d) \in M_{n} \times \mathbb{R}: \operatorname{det}(M)=d\right\}$
(b) $\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=x^{2}\right\}$
(c) $\left\{(y, x) \in \mathbb{R} \times \mathbb{R}: y=x^{2}\right\}$
(d) $\left\{(y, x) \in \mathbb{R}^{+} \times \mathbb{R}: y=x^{2}\right\}$
(e) $f: X \rightarrow X / R$ where $f(x)=[x]_{R}$ where R is an equivalence relation
(f) $f: X / R \rightarrow X$ where $f\left([x]_{R}\right)=x$ where R is an equivalence relation
(g) $f: X / R \rightarrow Y / S$ where R and S are equivalence relations, $g: X \rightarrow Y$ is a function, and $f\left([x]_{R}\right)=[g(x)]_{S}$
(a) Yes; a matrix has one determinant.
(b) Yes; a number has one square.
(c) No; $(1)^{2}=(-1)^{2}$.
(d) Yes; a real number has one non-negative square root.
(e) Yes; the equivalence classes partition X, so each element is in exactly one equivalence class.
(f) No; in general, equivalence classes consist of more than one element.
(g) No; let $X=\{1,2\}, Y=\{a, b\}, g(1)=a, g(2)=b, R=X \times X, S=i_{Y}$. Then $f\left([1]_{R}\right)=[a]_{S}$ and $f\left([2]_{R}\right)=[b]_{S}$, but $[1]_{R}=[2]_{R}$ while $[a]_{S} \neq[b]_{S}$.

