Functions I

A *function* $f : X \to Y$ is a relation from X to Y where each $x \in X$ has exactly one element $y \in Y$ such that $(x, y) \in f$. Usually, this is denoted y = f(x).

1: Prove the following statements:

(a) (Velleman pg 234 n 11c) Suppose $f : A \rightarrow B$ and S is a relation on B. Define

$$R = \{(x, y) \in A : f(x)Sf(y)\}.$$

Prove that if *S* is transitive, *R* is as well.

(b) Suppose *R* is a relation from *X* to *Y*. Prove that the relation *f* from *X* to $\mathscr{P}(Y)$ defined as

$$\{(x,B): (\forall y \in Y)(xRy \iff y \in B)\}$$

is a function.

- (a) Suppose xRy and yRz. Then f(x)Sf(y) and f(y)Sf(z). Since S is transitive, this implies f(x)Sf(z). By definition, this means xRz.
- (b) We must show that for all x, if $(x, B) \in f$ and $(x, B') \in f$, then B = B'. If $(x, B) \in f$ and $(x, B') \in f$, then $y \in B \iff xRy \iff y \in B'$. Thus, B = B'.

- 2: Are the following functions?
 - (a) $\{(M,d) \in M_n \times \mathbb{R} : \det(M) = d\}$
- (b) $\{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x^2\}$ (c) $\{(y, x) \in \mathbb{R} \times \mathbb{R} : y = x^2\}$
- (d) $\{(y,x) \in \mathbb{R}^+ \times \mathbb{R} : y = x^2\}$
- (e) $f: X \to X/R$ where $f(x) = [x]_R$ where *R* is an equivalence relation
- (f) $f: X/R \to X$ where $f([x]_R) = x$ where *R* is an equivalence relation
- (g) $f: X/R \to Y/S$ where R and S are equivalence relations, $g: X \to Y$ is a function, and $f([x]_R) = [g(x)]_S$
- (a) Yes; a matrix has one determinant.
- (b) Yes; a number has one square.
- (c) No; $(1)^2 = (-1)^2$.
- (d) Yes; a real number has one non-negative square root.
- (e) Yes; the equivalence classes partition X, so each element is in exactly one equivalence class.
- (f) No; in general, equivalence classes consist of more than one element.
- (g) No; let $X = \{1, 2\}$, $Y = \{a, b\}$, g(1) = a, g(2) = b, $R = X \times X$, $S = i_Y$. Then $f([1]_R) = [a]_S$ and $f([2]_R) = [b]_S$, but $[1]_R = [2]_R$ while $[a]_S \neq [b]_S$.