Functions II

A function $f : X \to Y$ is *one-to-one* if for all x_1 and x_2 in X, $f(x_1) = f(x_2)$ implies $x_1 = x_2$ (that is, each point of Y has at most one point in X mapped to it). It is *onto* if for all $y \in Y$ there exists $x \in X$ with y = f(x) (that is, each point of Y has at least one point in X mapped to it). Of course, the above conditions are what is needed for a function to be *invertible* (the inverse relation f^{-1} is a function if each point of Y has exactly one point in X mapped to it).

- **1:** Prove the following statements:
 - (a) Suppose $f, g: X \to Y$, and $h: Y \to Z$ are functions, with *h* one-to-one. Then $h \circ g = h \circ f$ implies g = f.
 - (b) Suppose $f, g: X \to Y$, and $h: W \to X$ are functions, with h onto. Then $g \circ h = f \circ h$ implies g = f.
 - (c) If $f : X \to X$ is also a transitive relation, then $f \circ f = f$.
 - (d) Suppose $f: X \to Z$, $g: Y \to Z$, and $h: X \to Y$, with *h* invertible. If $f = g \circ h$, then $f \circ h^{-1} = g$.
 - (e) Let *X* be a set, $\mathcal{F} = \{f \mid f : X \to X\}$, and $\mathcal{A} = \{f \in \mathcal{F} \mid f^{-1} \in \mathcal{F}\}$ (\mathcal{A} is the collection of invertible functions). Define the relation *R* on \mathcal{F} as $\{(f,g) \mid (\exists h \in \mathcal{A})(f = h^{-1} \circ g \circ h)\}$. Then *R* is an equivalence relation.

2: Are the following functions one-to-one? onto? If both, what is the inverse function?
(a) f: R² → R defined by f (x | y) = xy.
(b) f: R → R defined by f(x) = ax + b (with a, b ∈ R, a ≠ 0).
(c) f: R \ {0} → R defined by f(x) = 1/x
(d) f: R \ {0} → R \ {0} defined by f(x) = 1/x