Functions II

A function $f : X \to Y$ is *one-to-one* if for all x_1 and x_2 in X, $f(x_1) = f(x_2)$ implies $x_1 = x_2$ (that is, each point of Y has at most one point in X mapped to it). It is *onto* if for all $y \in Y$ there exists $x \in X$ with y = f(x) (that is, each point of Y has at least one point in X mapped to it). Of course, the above conditions are what is needed for a function to be *invertible* (the inverse relation f^{-1} is a function if each point of Y has exactly one point in X mapped to it).

- **1:** Prove the following statements:
 - (a) Suppose $f, g: X \to Y$, and $h: Y \to Z$ are functions, with *h* one-to-one. Then $h \circ g = h \circ f$ implies g = f.
 - (b) Suppose $f, g: X \to Y$, and $h: W \to X$ are functions, with h onto. Then $g \circ h = f \circ h$ implies g = f.
 - (c) If $f : X \to X$ is also a transitive relation, then $f \circ f = f$.
 - (d) Suppose $f : X \to Z$, $g : Y \to Z$, and $h : X \to Y$, with h invertible. If $f = g \circ h$, then $f \circ h^{-1} = g$.
 - (e) Let *X* be a set, $\mathcal{F} = \{f \mid f : X \to X\}$, and $\mathcal{A} = \{f \in \mathcal{F} \mid f^{-1} \in \mathcal{F}\}$ (\mathcal{A} is the collection of invertible functions). Define the relation *R* on \mathcal{F} as $\{(f,g) \mid (\exists h \in \mathcal{A})(f = h^{-1} \circ g \circ h)\}$. Then *R* is an equivalence relation.
- (a) Let x ∈ X be arbitrary. Put y₁ = g(x) and y₂ = f(x). We are given h(g(x)) = h(f(x)). Thus, h(y₁) = h(y₂). Since h is one-to-one, this implies g(x) = y₁ = y₂ = f(x). Since x was arbitrary, this implies g = f.
 [Technically speaking, we didn't need to rename the elements g(x) and f(x). However, this illustrates the application of the definition of one-to-one in terms of elements of the source and target spaces of h better.]
- (b) Let $x \in X$ be arbitrary. Since h is onto, x = h(w) for some $w \in W$. We are given g(h(w)) = f(h(w)). Thus, g(x) = f(x). Since x was arbitrary, this implies g = f.
- (c) Suppose *f* is a transitive relation and let $x \in X$ be arbitary. Put y = f(x) and z = f(y) = f(f(x)). Since $(x, y) \in f$ and $(y, z) \in f$, and *f* is transitive, we have $(x, z) \in f$, or z = f(x). Thus, f(f(x)) = f(x). Since *x* was arbitrary, this implies $f \circ f = f$.
- (d) Suppose $f = g \circ h$, and let $y \in Y$ be arbitrary. Because *h* is invertible, in particular it is onto, so y = h(x) for some $x \in X$. Now, $f(h^{-1}(y)) = f(x)$ by definition of h^{-1} , f(x) = g(h(x)) by supposition, and g(h(x)) = g(y) by definition of *x*. Since *y* was arbitrary, this implies $f \circ h^{-1} = g$.
- (e) Since i_X is invertible, R is reflexive. By the previous problem (and a very similar exercise for composition on the left), R is symmetric. Suppose fRg and gRk. Then there exist invertible h_1 and h_2 such that $f = h_1^{-1} \circ g \circ h_1$ and $g = h_2^{-1} \circ k \circ h_2$. Thus, $f = h_1^{-1} \circ h_2^{-1} \circ k \circ h_2 \circ h_1$. Now, $h_1^{-1} \circ h_2^{-1} = (h_2 \circ h_1)^{-1}$ as relations, and is a function because it is the composition of functions. So, $h_2 \circ h_1 \in \mathcal{A}$ (that is, it is invertible), so fRk, so R is transitive. Thus, it is an equivalence relation.

2: Are the following functions one-to-one? onto? If both, what is the inverse function?
(a) f: R² → R defined by f([x] y] = xy.
(b) f: R → R defined by f(x) = ax + b (with a, b ∈ R, a ≠ 0).
(c) f: R \ {0} → R defined by f(x) = 1/x
(d) f: R \ {0} → R \ {0} defined by f(x) = 1/x

- (a) This is onto: for any $t \in \mathbb{R}$, $t = f\left(\begin{bmatrix} t \\ 1 \end{bmatrix} \right)$. It is not one-to-one: $f\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = f\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$.
- (b) This is onto: for any $t \in \mathbb{R}$, $t = f\left(\frac{t-b}{a}\right)$. It is one-to-one: if $ax_1 + b = ax_2 + b$, subtracting *b* and dividing *a* from both sides yields $x_1 = x_2$. The inverse function is $f^{-1}(y) = \frac{y-b}{a}$.
- (c) This is not onto: if $x \neq 0$, then $\frac{1}{x} \neq 0$. It is one-to-one: if $\frac{1}{x_1} = \frac{1}{x_2}$, because $0 \notin \text{Ran}(f)$ we may apply the function f to both sides to see $x_1 = x_2$.
- (d) This is onto: if $y \in \mathbb{R} \setminus \{0\}$, then $y = f(\frac{1}{y})$. It is one-to-one by the argument above. The inverse function is $f^{-1}(y) = \frac{1}{y}$.