Functions II

A function $f: X \rightarrow Y$ is one-to-one if for all x_{1} and x_{2} in $X, f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$ (that is, each point of Y has at most one point in X mapped to it). It is onto if for all $y \in Y$ there exists $x \in X$ with $y=f(x)$ (that is, each point of Y has at least one point in X mapped to it). Of course, the above conditions are what is needed for a function to be invertible (the inverse relation f^{-1} is a function if each point of Y has exactly one point in X mapped to it).

1: Prove the following statements:
(a) Suppose $f, g: X \rightarrow Y$, and $h: Y \rightarrow Z$ are functions, with h one-to-one. Then $h \circ g=h \circ f$ implies $g=f$.
(b) Suppose $f, g: X \rightarrow Y$, and $h: W \rightarrow X$ are functions, with h onto. Then $g \circ h=f \circ h$ implies $g=f$.
(c) If $f: X \rightarrow X$ is also a transitive relation, then $f \circ f=f$.
(d) Suppose $f: X \rightarrow Z, g: Y \rightarrow Z$, and $h: X \rightarrow Y$, with h invertible. If $f=g \circ h$, then $f \circ h^{-1}=g$.
(e) Let X be a set, $\mathcal{F}=\{f \mid f: X \rightarrow X\}$, and $\mathcal{A}=\left\{f \in \mathcal{F} \mid f^{-1} \in \mathcal{F}\right\}$ (\mathcal{A} is the collection of invertible functions). Define the relation R on \mathcal{F} as $\left\{(f, g) \mid(\exists h \in \mathcal{A})\left(f=h^{-1} \circ g \circ h\right)\right\}$. Then R is an equivalence relation.
(a) Let $x \in X$ be arbitrary. Put $y_{1}=g(x)$ and $y_{2}=f(x)$. We are given $h(g(x))=h(f(x))$. Thus, $h\left(y_{1}\right)=h\left(y_{2}\right)$. Since h is one-to-one, this implies $g(x)=y_{1}=y_{2}=f(x)$. Since x was arbitrary, this implies $g=f$.
[Technically speaking, we didn't need to rename the elements $g(x)$ and $f(x)$. However, this illustrates the application of the definition of one-to-one in terms of elements of the source and target spaces of h better.]
(b) Let $x \in X$ be arbitrary. Since h is onto, $x=h(w)$ for some $w \in W$. We are given $g(h(w))=f(h(w))$. Thus, $g(x)=f(x)$. Since x was arbitrary, this implies $g=f$.
(c) Suppose f is a transitive relation and let $x \in X$ be arbitary. Put $y=f(x)$ and $z=f(y)=f(f(x))$. Since $(x, y) \in f$ and $(y, z) \in f$, and f is transitive, we have $(x, z) \in f$, or $z=f(x)$. Thus, $f(f(x))=f(x)$. Since x was arbitrary, this implies $f \circ f=f$.
(d) Suppose $f=g \circ h$, and let $y \in Y$ be arbitrary. Because h is invertible, in particular it is onto, so $y=h(x)$ for some $x \in X$. Now, $f\left(h^{-1}(y)\right)=f(x)$ by definition of $h^{-1}, f(x)=g(h(x))$ by supposition, and $g(h(x))=g(y)$ by definition of x. Since y was arbitrary, this implies $f \circ h^{-1}=g$.
(e) Since i_{X} is invertible, R is reflexive. By the previous problem (and a very similar exercise for composition on the left), R is symmetric. Suppose $f R g$ and $g R k$. Then there exist invertible h_{1} and h_{2} such that $f=h_{1}^{-1} \circ g \circ h_{1}$ and $g=h_{2}^{-1} \circ k \circ h_{2}$. Thus, $f=h_{1}^{-1} \circ h_{2}^{-1} \circ k \circ h_{2} \circ h_{1}$. Now, $h_{1}^{-1} \circ h_{2}^{-1}=\left(h_{2} \circ h_{1}\right)^{-1}$ as relations, and is a function because it is the composition of functions. So, $h_{2} \circ h_{1} \in \mathcal{A}$ (that is, it is invertible), so $f R k$, so R is transitive. Thus, it is an equivalence relation.

2: Are the following functions one-to-one? onto? If both, what is the inverse function?
(a) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=x y$.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x+b$ (with $a, b \in \mathbb{R}, a \neq 0)$.
(c) $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$
(d) $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R} \backslash\{0\}$ defined by $f(x)=\frac{1}{x}$
(a) This is onto: for any $t \in \mathbb{R}, t=f\left(\left[\begin{array}{l}t \\ 1\end{array}\right]\right)$. It is not one-to-one: $f\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=f\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$.
(b) This is onto: for any $t \in \mathbb{R}, t=f\left(\frac{t-b}{a}\right)$. It is one-to-one: if $a x_{1}+b=a x_{2}+b$, subtracting b and dividing a from both sides yields $x_{1}=x_{2}$. The inverse function is $f^{-1}(y)=\frac{y-b}{a}$.
(c) This is not onto: if $x \neq 0$, then $\frac{1}{x} \neq 0$. It is one-to-one: if $\frac{1}{x_{1}}=\frac{1}{x_{2}}$, because $0 \notin \operatorname{Ran}(f)$ we may apply the function f to both sides to see $x_{1}=x_{2}$.
(d) This is onto: if $y \in \mathbb{R} \backslash\{0\}$, then $y=f\left(\frac{1}{y}\right)$. It is one-to-one by the argument above. The inverse function is $f^{-1}(y)=\frac{1}{y}$.

