Equivalent Forms

Here we are interested in determining if two formulas are necessarily equivalent (based on their logical structure and references to the same simpler propositions).
1.1.9: \quad Suppose P, Q, R, and S are propositional forms, P is equivalent to Q, and R is equivalent to S. For each pair of forms, determine whether they are necessarily equivalent. If they are, explain why.
(a) P and R
(d) $P \vee S$ and $Q \vee R$
(b) P and $\sim \sim Q$
(e) $\sim(P \wedge S)$ and $\sim Q \vee \sim R$
(c) $P \wedge S$ and $Q \wedge R$
(f) $P \wedge Q$ and $S \wedge R$
1.2.8: Prove the following parts of Theorem 1.2 .2 by showing the following pairs of statements are equivalent for propositions P and Q.
(a) $P \Longrightarrow Q$ and $\sim P \vee Q$
(d) $\sim(P \wedge Q)$ and $P \Longrightarrow \sim Q$
(b) $P \Longleftrightarrow Q$ and $(P \Longrightarrow Q) \wedge(Q \Longrightarrow P)$
(e) $\sim(P \wedge Q)$ and $Q \Longrightarrow \sim P$
(c) $\sim(P \Longrightarrow Q)$ and $P \wedge \sim Q$
(f) $P \Longrightarrow(Q \Longrightarrow R)$ and $(P \wedge Q) \Longrightarrow R$

