Equivalent Forms

Here we are interested in determining if two formulas are necessarily equivalent (based on their logical structure and references to the same simpler propositions).
1.1.9: \quad Suppose P, Q, R, and S are propositional forms, P is equivalent to Q, and R is equivalent to S. For each pair of forms, determine whether they are necessarily equivalent. If they are, explain why.
(a) P and R
(d) $P \vee S$ and $Q \vee R$
(b) P and $\sim \sim Q$
(e) $\sim(P \wedge S)$ and $\sim Q \vee \sim R$
(c) $P \wedge S$ and $Q \wedge R$
(f) $P \wedge Q$ and $S \wedge R$
(a) These need not be equivalent, as P and R are not necessarily related.
(b) These are equivalent, as $\sim \sim Q$ is equivalent to $\sim \sim P$, which is equivalent to P (as a double negation).
(c) These are equivalent, as $P \wedge S$ is equivalent to $P \wedge R$, which is equivalent to $Q \wedge R$.
(d) Similarly, these are equivalent, as $P \vee S$ is equivalent to $Q \vee S$, which is equivalent to $Q \vee R$.
(e) These are equivalent, as $\sim(P \wedge S)$ is equivalent to $\sim P \vee \sim S$ by a de Morgan's law, and this is equivalent to $\sim Q \vee \sim R$ in the same way as the previous parts.
(f) These need not be equivalent, as $P \wedge Q$ is equivalent to $P \wedge P$, which is equivalent to P, and $S \wedge R$ is equivalent to R similarly, and as observed above, P and R are not necessarily related.
1.2.8: Prove the following parts of Theorem 1.2 .2 by showing the following pairs of statements are equivalent for propositions P and Q.
(a) $P \Longrightarrow Q$ and $\sim P \vee Q$
(d) $\sim(P \wedge Q)$ and $P \Longrightarrow \sim Q$
(b) $P \Longleftrightarrow Q$ and $(P \Longrightarrow Q) \wedge(Q \Longrightarrow P)$
(e) $\sim(P \wedge Q)$ and $Q \Longrightarrow \sim P$
(c) $\sim(P \Longrightarrow Q)$ and $P \wedge \sim Q$
(f) $P \Longrightarrow(Q \Longrightarrow R)$ and $(P \wedge Q) \Longrightarrow R$

P	Q	$P \Longrightarrow Q$	$\sim P$	$\sim P \vee Q$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	F	T	T

(b) Again, we construct a truth table, the way we defined these objects:

| P | Q | $P \Longleftrightarrow Q$ | $P \Longrightarrow Q$ | $Q \Longrightarrow P$ | $(P \Longrightarrow Q) \wedge(Q \Longrightarrow P)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | T |
| T | F | F | F | T | F |
| F | T | F | T | F | F |
| F | F | T | T | T | T |

(c) Here, we can use the first part, getting that $\sim(P \Longrightarrow Q)$ is equivalent to $\sim(\sim P \vee Q)$; then we can use a de Morgan's law to get $\sim \sim P \wedge \sim Q$, which is equivalent to $P \wedge \sim Q$.
(d) Here, we can use a de Morgan's law to get $\sim P \vee \sim Q$, then use the first part to get $P \Longrightarrow \sim Q$.
(e) Here, we can use the previous part to get $P \Longrightarrow \sim Q$, then take the contrapositive (which is equivalent) to get $\sim \sim Q \Longrightarrow \sim P$, which is equivalent to $Q \Longrightarrow \sim P$.
(f) Here, we can repeatedly use the first part to get $\sim P \vee(\sim Q \vee R)$, which is equivalent to ($\sim P \vee \sim Q) \vee R$. Then a de Morgan's law gives $\sim(P \wedge Q) \vee R$, which (again by the first part, which is really one of the most useful of these "algebraic" manipulations) gives $(P \wedge Q) \Longrightarrow R$.

