Equivalent Forms

Here we are interested in determining if two formulas are necessarily equivalent (based on their logical structure and references to the same simpler propositions).

1.1.9: Suppose *P*, *Q*, *R*, and *S* are propositional forms, *P* is equivalent to *Q*, and *R* is equivalent to *S*. For each pair of forms, determine whether they are necessarily equivalent. If they are, explain why.

(a) P and R	(d) $P \lor S$ and $Q \lor R$
(b) P and $\sim \sim Q$	(e) ~ ($P \land S$) and ~ $Q \lor ~ R$
(c) $P \wedge S$ and $Q \wedge R$	(f) $P \wedge Q$ and $S \wedge R$

(a) These need not be equivalent, as *P* and *R* are not necessarily related.

- (b) These are equivalent, as $\sim Q$ is equivalent to $\sim P$, which is equivalent to P (as a double negation).
- (c) These are equivalent, as $P \wedge S$ is equivalent to $P \wedge R$, which is equivalent to $Q \wedge R$.
- (d) Similarly, these are equivalent, as $P \lor S$ is equivalent to $Q \lor S$, which is equivalent to $Q \lor R$.
- (e) These are equivalent, as ~ $(P \land S)$ is equivalent to ~ $P \lor ~ S$ by a de Morgan's law, and this is equivalent to ~ $Q \lor ~ R$ in the same way as the previous parts.
- (f) These need not be equivalent, as $P \land Q$ is equivalent to $P \land P$, which is equivalent to P, and $S \land R$ is equivalent to R similarly, and as observed above, P and R are not necessarily related.

1.2.8: Prove the following parts of Theorem 1.2.2 by showing the following pairs of statements are equivalent for propositions *P* and *Q*.

(a) $P \implies Q \text{ and } \sim P \lor Q$ (b) $P \iff Q \text{ and } (P \implies Q) \land (Q \implies P)$ (c) $\sim (P \implies Q) \text{ and } P \land \sim Q$ (d) $\sim (P \land Q) \text{ and } P \implies \sim Q$ (e) $\sim (P \land Q) \text{ and } Q \implies \sim P$ (f) $P \implies (Q \implies R) \text{ and } (P \land Q) \implies R$

	Р	Q	$P \Longrightarrow Q$	$\sim P$	$\sim P \lor Q$
-	Т	Т	Т	F	Т
ble:	Т	F	F	F	F
	F	Т	Т	Т	Т
	F	F	F	Т	Т

(a) Here we appeal directly to the truth table:

(b) Again, we construct a truth table, the way we defined these objects:

Р	Q	$P \iff Q$	$P \Longrightarrow Q$	$Q \Longrightarrow P$	$(P \Longrightarrow Q) \land (Q \Longrightarrow P)$
Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т

- (c) Here, we can use the first part, getting that $\sim (P \implies Q)$ is equivalent to $\sim (\sim P \lor Q)$; then we can use a de Morgan's law to get $\sim \sim P \land \sim Q$, which is equivalent to $P \land \sim Q$.
- (d) Here, we can use a de Morgan's law to get ~ $P \lor ~ Q$, then use the first part to get $P \implies ~ Q$.
- (e) Here, we can use the previous part to get $P \implies \sim Q$, then take the contrapositive (which is equivalent) to get $\sim \sim Q \implies \sim P$, which is equivalent to $Q \implies \sim P$.
- (f) Here, we can repeatedly use the first part to get ~ $P \lor (\sim Q \lor R)$, which is equivalent to $(\sim P \lor \sim Q) \lor R$. Then a de Morgan's law gives ~ $(P \land Q) \lor R$, which (again by the first part, which is really one of the most useful of these "algebraic" manipulations) gives $(P \land Q) \Longrightarrow R$.