Quantifiers

When referencing variables, we bind them with quantifiers. There are two basic quantifiers, the universal quantifier, usually read "for all" and written \forall, and the existential quantifier, usually read "there exists" and written \exists.

1.3.10: Which of the following are true in the universe of all real numbers?

(a) $(\forall x)(\exists y)(x+y=0)$
(d) $(\forall x)[x>0 \Longrightarrow(\exists y)(y<0 \wedge x y>0)]$
(b) $(\exists x)(\forall y)(x+y=0)$
(e) $(\forall y)(\exists x)(\forall z)(x y=x z)$
(c) $(\exists x)(\exists y)\left(x^{2}+y^{2}=-1\right)$
(f) $(\exists x)(\forall y)(x \leq y)$
(a) This is true: given an $x \in \mathbb{R}$, choosing $y=-x$ ensures $x+y=x+(-x)=0$. In fact, $-x$ is the unique choice for y making the statement true.
(b) This, on the other hand, is false: such an x would have to be an additive inverse for all real numbers, but the inverse depends on the number. For any choice of x, the choice $y=1-x$ has $x+y=x+(1-x)=1 \neq 0$, disproving the statement.
(c) This is false as well: the statement $(\forall x)\left(x^{2} \geq 0\right)$ is true, and $(\forall x)(\forall y)(x \geq 0 \wedge y \geq 0 \Longrightarrow x+y \geq 0)$ is true; combining these, we have $(\forall x)(\forall y)\left(x^{2}+y^{2} \geq 0\right)$, and $-1<0$.
(d) This is false: if $x>0$ and $y<0$, then $x y<0$.
(e) This is true: given any y, setting $x=0$ makes $x y=x z=0$ true for all choices of z. In fact, the stronger statement $(\exists x)(\forall y)(\forall z)(x y=x z)$ is true, because our choice of x did not depend on y.
(f) This is false, as for any choice of x, the number $y=x-1<x$.
1.3.13: Which of the following are denials of $(\exists!x) P(x)$?
(a) $(\forall x) P(x) \vee(\forall x) \sim P(x)$
(c) $(\forall x)[P(x) \Longrightarrow(\exists y)(P(y) \wedge x \neq y)]$
(b) $(\forall x) \sim P(x) \vee(\exists y)(\exists z)(y \neq z \wedge P(y) \wedge P(z))$
$(\mathrm{d}) \sim(\forall x)(\forall y)[(P(x) \wedge P(y)) \Longrightarrow x=y]$
(a) This is not a denial of the statement (although if true in a universe of more than one element, it does make it false). Suppose $U=\{a, b, c\}$ and the truth set of P is $\{a, b\}$. Then $(\forall x) P(x)$ is false, as is $(\forall x) \sim P(x)$. Thus, in U, the given statements are not equivalent.
(b) This is a denial of the statement. If $(\forall x) \sim P(x)$ is true, $(\exists!x) P(x)$ is false. Otherwise, $(\exists y) P(y)$ is true; for $(\exists!x) P(x)$ to be false we then need some $z \neq y$ such that $P(z)$; this is exactly the second clause of the given statement.
(c) This is a simpler denial: if $(\forall x) \sim P(x)$, the implication is true because the hypothesis is false. If $(\exists x) P(x)$, the implication requires $y \neq x$ such that $P(y)$, so x is not unique.
(d) This is not a denial: if $(\forall x) \sim P(x)$, the statement $(\forall x)(\forall y)[(P(x) \wedge P(y)) \Longrightarrow x=y]$ is true, so the given statement is false; however, $(\exists!x) P(x)$ is also false.
1.3.3: Translate these definitions from the Appendix into quantified sentences.
(a) The natural number a divides the natural number b.
(b) The natural number n is prime.
(c) The natural number n is composite.
(a) Here we write (in the universe \mathbb{N})

$$
a \mid b \Longleftrightarrow(\exists q)(b=q a) .
$$

(b) Here, we have

$$
\operatorname{Prime}(n) \Longleftrightarrow[n>1 \wedge(\forall m)(m \mid n \Longrightarrow(m=1 \vee m=n))] .
$$

(c) Here, we could write

$$
\operatorname{Composite}(n) \Longleftrightarrow[n>1 \wedge \sim \operatorname{Prime}(n)]
$$

More directly, we could write

$$
\operatorname{Composite}(n) \Longleftrightarrow[n>1 \wedge(\exists m)(m>1 \wedge m \mid n)] \text {. }
$$

