Proofs I

1.5.5: \quad A circle has center $(2,4)$.

(a) Prove that $(-1,5)$ and $(5,1)$ are not both on the circle.
(b) Prove that if the radius of the circle is less than 5 , then the circle does not intersect the line $y=x-6$.
(c) Prove that if $(0,3)$ is not inside the circle, then $(3,1)$ is not inside the circle.
(a) Since the circle has center $(2,4)$, it consists of those points (x, y) that satisfy the equation

$$
(x-2)^{2}+(y-4)^{2}=R^{2}
$$

for some value R, the radius (by the definition of a circle). If $(-1,5)$ is on the circle, then $R^{2}=(-1-2)^{2}+(5-$ $4)^{2}=10$. If $(5,1)$ is on the circle, then $R^{2}=(5-2)^{2}+(1-4)^{2}=18$. As $10 \neq 18$, it cannot be the case that both points lie on the circle.
(b) Suppose that the point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ lies on both the circle and the line $y=x-6$ (this can be so if and only if they intersect). Then in particular, we have $y_{0}=x_{0}-6$, and $\left(x_{0}-2\right)^{2}+\left(y_{0}-4\right)^{2}=R^{2}$. Using the first equality gives

$$
\left(x_{0}-2\right)^{2}+\left(x_{0}-10\right)^{2}=2 x_{0}^{2}-24 x_{0}+104=R^{2} .
$$

Thus, we have from the quadratic formula

$$
x_{0}=6 \pm \sqrt{-16+\frac{1}{2} R^{2}} .
$$

For this to have a real solution, we require $-16+\frac{1}{2} R^{2} \geq 0$, or

$$
R^{2} \geq 32 .
$$

Were $R<5$, then $R^{2}<25<32$, a contradiction.
(c) If $(0,3)$ is not inside the circle, then its distance from the center is

$$
(0-2)^{2}+(3-4)^{2}=5>R^{2} .
$$

We compute the distance of $(3,1)$ from the center as

$$
(3-2)^{2}+(1-4)^{2}=10>5>R^{2},
$$

so $(3,1)$ is also not inside the circle.
1.5.7: Suppose a, b, c, and d are positive integers. Prove each biconditional statement.
(a) $a c$ divides $b c$ if and only if a divides b.
(b) $a+1$ divides b and b divides $b+3$ if and only if $a=2$ and $b=3$
(c) $a+c=b$ and $2 b-a=d$ if and only if $a=b-c$ and $b+c=d$.
(d) $a+2 c \neq d$ or $b-a \neq 2 d$ if and only if $b+2 c \neq 3 d$ or $3 a+4 c \neq b$.
(a) First, suppose $b=a k$ for some positive integer k. Then $b c=a k c=(a c) k$; that is, $a c \mid b c$.

Now suppose $b c=(a c) k$ for some positive integer k. As $c>0$, we may divide both sides by c (or, more formally, apply the Cancellative Law for positive integers) to get $b=a k$; that is, $a \mid b$.
(b) Suppose $a=2$ and $b=3$. Then $a+1=3=1 b$, so $a+1 \mid b$, and $b+3=6=2 b$, so $b \mid b+3$.

Now suppose $b=(a+1) k$ and $b+3=b \ell$, for positive integers k and ℓ. From the second equation, we have $3=b(\ell-1)$; as 3 is prime, this can only be the case if $b=1$ or $b=3$. In the former case, we would have $1=(a+1) k$, forcing $a+1=1=k$, forcing $a=0$, contradicting positivity. Thus, we must have $b=3$, hence $3=(a+1) k$, hence $a+1=1$ or $a+1=3$. We have seen the first causes a contradiction, so it must be that $a+1=3$, or $a=2$.
(c) Suppose $a=b-c$ and $b+c=d$. Then $a+c=b-c+c=b$, and $2 b-a=2 b-(b-c)=b+c=d$.

Now suppose $a+c=b$ and $2 b-a=d$. Then $a=a+c-c=b-c$, and $b+c=2 b-a+a+c-b=d+b-b=d$.
(d) By taking the contrapositives (and the fact that $\sim P \Longleftrightarrow \sim Q$ is equivalent to $P \Longleftrightarrow Q$), we get that the given statement is equivalent to " $a+2 c=d$ and $b-a=2 d$ if and only if $b+2 c=3 d$ and $3 a+4 c=b$ ".
Suppose the left hand statements are true. Then $b+2 c=b-a+a+2 c=d+2 d=3 d$, and $3 a+4 c=a+2(a+2 c)=$ $a+2 d=a+b-a=b$.

Now suppose the right hand statements are true. Then $a+2 c=a+b+2 c-b=a+3 d-3 a-4 c=-2(a+2 c)+3 d$; adding $2(a+2 c)$ to both sides and applying the Cancellative Law gives $a+2 c=d$. Further, $b-a=b+2 c-2 c-a=$ $3 d-d=2 d$ (using that result).

