Proofs II

1.6.3: Prove that if every even natural number greater than 2 is the sum of two primes, then every odd natural number greater than 5 is the sum of three primes.
1.6.4 Provide either a proof or a counterexample for each of these statements.
(a) For all positive integers $x, x^{2}+x+41$ is a prime.
(b) In the universe of all reals, $(\forall x)(\exists y)(x+y=0)$.
(c) In the universe of all reals, $(\forall x)(\forall y)\left(x>1 \wedge y>0 \Longrightarrow y^{x}>x\right)$.
(d) For integers a, b, c, if a divides $b c$, then either a divides b, or a divides c.

1.7.3: Prove that

(a) $5 n^{2}+3 n+4$ is even, for all integers n.
(b) for all integers n, if $5 n+1$ is even, then $2 n^{2}+3 n+4$ is odd.
(c) the sum of five consecutive integers is always dividible by 5 .
(d) $n^{3}-n$ is divisible by 6 , for all intgers n.

