Proofs II

1.6.3: Prove that if every even natural number greater than 2 is the sum of two primes, then every odd natural number greater than 5 is the sum of three primes.

1.6.4 Provide either a proof or a counterexample for each of these statements.

- (a) For all positive integers x, $x^2 + x + 41$ is a prime.
- (b) In the universe of all reals, $(\forall x)(\exists y)(x + y = 0)$.
- (c) In the universe of all reals, $(\forall x)(\forall y)(x > 1 \land y > 0 \implies y^x > x)$.
- (d) For integers *a*, *b*, *c*, if *a* divides *bc*, then either *a* divides *b*, or *a* divides *c*.

1.7.3: Prove that

- (a) $5n^2 + 3n + 4$ is even, for all integers *n*.
- (b) for all integers *n*, if 5n + 1 is even, then $2n^2 + 3n + 4$ is odd.
- (c) the sum of five consecutive integers is always dividible by 5.
- (d) $n^3 n$ is divisible by 6, for all intgers *n*.