Proofs II

1.6.3: Prove that if every even natural number greater than 2 is the sum of two primes, then every odd natural number greater than 5 is the sum of three primes.

If $n>5$ is odd, then $n-3$ is even and greater than 2 ; suppose there exist primes p and q such that $n-3=p+q$. Then $n=3+p+q$, the sum of three primes.
1.6.4 Provide either a proof or a counterexample for each of these statements.
(a) For all positive integers $x, x^{2}+x+41$ is a prime.
(b) In the universe of all reals, $(\forall x)(\exists y)(x+y=0)$.
(c) In the universe of all reals, $(\forall x)(\forall y)\left(x>1 \wedge y>0 \Longrightarrow y^{x}>x\right)$.
(d) For integers a, b, c, if a divides $b c$, then either a divides b, or a divides c.
(a) This is false: for $x=41$, we have $x^{2}+x+41=41 \cdot 43$.
(b) This is true: given $x \in \mathbb{R}$, choosing $y=-x \in \mathbb{R}$ gives $x+y=x-x=0$.
(c) This is false: take $x=2>1$ and $y=1>0$. Then $y^{x}=1^{2}=1 \leq 2=x$.
(d) This is false: take $a=6, b=2$ and $c=3$. Then a divides $b c$ (with remainder 1), but neither b nor c.
1.7.3: Prove that
(a) $5 n^{2}+3 n+4$ is even, for all integers n.
(b) for all integers n, if $5 n+1$ is even, then $2 n^{2}+3 n+4$ is odd.
(c) the sum of five consecutive integers is always dividible by 5 .
(d) $n^{3}-n$ is divisible by 6 , for all intgers n.
(a) If n is even, then n^{2} is even, so $5 n^{2}, 3 n$, and 4 are all even; thus, their sum is even. If n is odd, then n^{2} is odd, so $5 n^{2}$ and $3 n$ are odd while 4 is even; the sum of two odd integers is even, and the sum of two evens is even, so the total is even as well.
(b) If $5 n+1$ is even, then $5 n$ is odd, so n must be odd. Then $3 n$ is odd, while $2 n^{2}$ and 4 are even, so the sum is of one odd term and two even ones, hence it is odd.
(c) Suppose the integers are $n, n+1, n+2, n+3$, and $n+4$. Then their sum is $5 n+10=5(n+2)$, which is divisible by 5 .
(d) We show separately that $n^{3}-n$ is divisible by 2 and by 3 , which implies it is divisible by $6=2 \cdot 3$ because they share no common factors. If n is even, then n^{3} is even, and $n^{3}-n$ is the difference of two even numbers, hence even. If n is odd, then n^{3} is odd, and $n^{3}-n$ is the difference of two odd numbers, hence even. In both cases, $2 \mid n^{3}-n$.
We note $n^{3}-n=n\left(n^{2}-1\right)$. If $3 \mid n$, then $3 \mid n\left(n^{2}-1\right)$. If $n=3 k+1$, then $n^{2}=9 k^{2}+6 k+1$, so $n^{2}-1=3 k(3 k+2)$, and $3 \mid n\left(n^{2}-1\right)$. If $n=3 k+2$, then $n^{2}=9 k^{2}+12 k+4$, so $n^{2}-1=3\left(3 k^{2}+6 k+1\right)$, and $3 \mid n\left(n^{2}-1\right)$.

