1.6.3: Prove that if every even natural number greater than 2 is the sum of two primes, then every odd natural number greater than 5 is the sum of three primes.

If n > 5 is odd, then n - 3 is even and greater than 2; suppose there exist primes p and q such that n - 3 = p + q. Then n = 3 + p + q, the sum of three primes.

1.6.4 Provide either a proof or a counterexample for each of these statements.

- (a) For all positive integers x, $x^2 + x + 41$ is a prime.
- (b) In the universe of all reals, $(\forall x)(\exists y)(x + y = 0)$.
- (c) In the universe of all reals, $(\forall x)(\forall y)(x > 1 \land y > 0 \implies y^x > x)$.
- (d) For integers *a*, *b*, *c*, if *a* divides *bc*, then either *a* divides *b*, or *a* divides *c*.
- (a) This is false: for x = 41, we have $x^2 + x + 41 = 41 \cdot 43$.
- (b) This is true: given $x \in \mathbb{R}$, choosing $y = -x \in \mathbb{R}$ gives x + y = x x = 0.
- (c) This is false: take x = 2 > 1 and y = 1 > 0. Then $y^x = 1^2 = 1 \le 2 = x$.
- (d) This is false: take a = 6, b = 2 and c = 3. Then *a* divides *bc* (with remainder 1), but neither *b* nor *c*.

1.7.3: Prove that

- (a) $5n^2 + 3n + 4$ is even, for all integers *n*.
- (b) for all integers *n*, if 5n + 1 is even, then $2n^2 + 3n + 4$ is odd.
- (c) the sum of five consecutive integers is always dividible by 5.
- (d) $n^3 n$ is divisible by 6, for all intgers *n*.
- (a) If *n* is even, then n^2 is even, so $5n^2$, 3n, and 4 are all even; thus, their sum is even. If *n* is odd, then n^2 is odd, so $5n^2$ and 3n are odd while 4 is even; the sum of two odd integers is even, and the sum of two evens is even, so the total is even as well.
- (b) If 5n + 1 is even, then 5n is odd, so *n* must be odd. Then 3n is odd, while $2n^2$ and 4 are even, so the sum is of one odd term and two even ones, hence it is odd.
- (c) Suppose the integers are n, n+1, n+2, n+3, and n+4. Then their sum is 5n+10 = 5(n+2), which is divisible by 5.
- (d) We show separately that $n^3 n$ is divisible by 2 and by 3, which implies it is divisible by $6 = 2 \cdot 3$ because they share no common factors. If *n* is even, then n^3 is even, and $n^3 n$ is the difference of two even numbers, hence even. If *n* is odd, then n^3 is odd, and $n^3 n$ is the difference of two odd numbers, hence even. In both cases, $2 \mid n^3 n$.

We note $n^3 - n = n(n^2 - 1)$. If $3 \mid n$, then $3 \mid n(n^2 - 1)$. If n = 3k + 1, then $n^2 = 9k^2 + 6k + 1$, so $n^2 - 1 = 3k(3k + 2)$, and $3 \mid n(n^2 - 1)$. If n = 3k + 2, then $n^2 = 9k^2 + 12k + 4$, so $n^2 - 1 = 3(3k^2 + 6k + 1)$, and $3 \mid n(n^2 - 1)$.