Sets II

- **2.2.6:** Give an example of nonempty sets *A*, *B*, and *C* such that:
 - (a) $C \subseteq A \cup B$ and $A \cap B \nsubseteq C$
 - (b)
- (a) False: the set contains sets of numbers, but 5 is a number.
- (b) True, but 6 is not.
- (c) False: the set contains a number, but {5} is a set of numbers.
- (d) True.
- (e) True.
- (f) False.
- **2.1.6:** Give an example, if there is one, of sets *A*, *B*, and *C* such that the following are true.
 - (a) $A \subseteq B$, $B \nsubseteq C$, and $A \subseteq C$.
 - (b) $A \subseteq B$, $B \subseteq C$, and $C \subseteq A$.
 - (c) $A \nsubseteq B$, $B \nsubseteq C$, and $A \subseteq C$
 - (d) $A \subseteq B$, $B \nsubseteq C$, and $A \nsubseteq C$.
 - (e) $A \in B$, $A \subseteq B$, and $B \subseteq C$.
- (a) Here we can take $A = \{a\}$, $B = \{a, b\}$, and $C = \{a, c\}$.
- (b) Here we can take $A = B = C = \{a\}$.
- (c) Here we can take $A = \{a\}$, $B = \{b\}$, and $C = \{a, c\}$.
- (d) Here we can take $A = \{a\}$, $B = \{a, b\}$, and $C = \{c\}$.
- (e) Here we can take $A = \{a\}$, $B = \{a, \{a\}\}$, and $C = \{a, \{a\}, \{\{a\}\}\}\}$.
- (f) Finally, this is not possible: since $A \subset B$, if $x \in A$, then $x \in B$, and since $B \subset C$, if $x \in B$, then $x \in C$. So, if $x \in A$, then $x \in C$, so $A \subseteq C$ if $A \subseteq B$ and $B \subseteq C$.

2.1.17: True or false?

- (a) $\emptyset \in \mathcal{P}(\{\emptyset, \{\emptyset\}\})$
- (b) $\{\emptyset\} \in \mathcal{P}(\{\emptyset, \{\emptyset\}\})$
- (c) $\{\{\emptyset\}\}\in \mathcal{P}(\{\emptyset,\{\emptyset\}\})$
- $(d) \ \emptyset \subseteq \mathcal{P}\left(\{\emptyset,\{\emptyset\}\}\right)$
- (e) $\{\emptyset\} \subseteq \mathcal{P}(\{\emptyset, \{\emptyset\}\})$
- (f) $\{\{\emptyset\}\}\subseteq \mathcal{P}(\{\emptyset,\{\emptyset\}\})$
- (g) $3 \in \mathbb{Q}$
- (h) $\{3\} \subseteq \mathscr{P}(\mathbb{Q})$
- (i) $\{3\} \in \mathcal{P}(\mathbb{Q})$
- (j) $\{\{3\}\}\subseteq \mathscr{P}(\mathbb{Q})$
- (a) The power set

$$\mathcal{P}\left(\left\{\emptyset,\left\{\emptyset\right\}\right\}\right)=\left\{\emptyset,\left\{\emptyset\right\},\left\{\left\{\emptyset\right\}\right\},\left\{\emptyset,\left\{\emptyset\right\}\right\}\right\}.$$

So, this is true.

- (b) This is also true.
- (c) This is, yet again, true.
- (d) This is true (the empty set is a subset of all sets).
- (e) This is true becasue \emptyset is in the power set.
- (f) This is true because $\{\emptyset\}$ is in the power set.
- (g) This is true, $3 = \frac{3}{1}$ is rational.
- (h) This is false: 3 is not in the power set of rationals, whose elements are subsets of rationals.
- (i) This is true.
- (j) This is true (it means the same thing as the line above).