2.2.6: Give an example of nonempty sets A, B, and C such that:
(a) $C \subseteq A \cup B$ and $A \cap B \nsubseteq C$
(b)
(a) False: the set contains sets of numbers, but 5 is a number.
(b) True, but 6 is not.
(c) False: the set contains a number, but $\{5\}$ is a set of numbers.
(d) True.
(e) True.
(f) False.
2.1.6: \quad Give an example, if there is one, of sets A, B, and C such that the following are true.
(a) $A \subseteq B, B \nsubseteq C$, and $A \subseteq C$.
(b) $A \subseteq B, B \subseteq C$, and $C \subseteq A$.
(c) $A \nsubseteq B, B \nsubseteq C$, and $A \subseteq C$
(d) $A \subseteq B, B \nsubseteq C$, and $A \nsubseteq C$.
(e) $A \in B, A \subseteq B$, and $B \subseteq C$.
(a) Here we can take $A=\{a\}, B=\{a, b\}$, and $C=\{a, c\}$.
(b) Here we can take $A=B=C=\{a\}$.
(c) Here we can take $A=\{a\}, B=\{b\}$, and $C=\{a, c\}$.
(d) Here we can take $A=\{a\}, B=\{a, b\}$, and $C=\{c\}$.
(e) Here we can take $A=\{a\}, B=\{a,\{a\}\}$, and $C=\{a,\{a\},\{\{a\}\}\}$.
(f) Finally, this is not possible: since $A \subset B$, if $x \in A$, then $x \in B$, and since $B \subset C$, if $x \in B$, then $x \in C$. So, if $x \in A$, then $x \in C$, so $A \subseteq C$ if $A \subseteq B$ and $B \subseteq C$.
2.1.17: True or false?
(a) $\emptyset \in \mathscr{P}(\{\emptyset,\{\emptyset\}\})$
(b) $\{\emptyset\} \in \mathscr{P}(\{\emptyset,\{\emptyset\}\})$
(c) $\{\{\emptyset\}\} \in \mathscr{P}(\{\emptyset,\{\emptyset\}\})$
(d) $\emptyset \subseteq \mathscr{P}(\{\emptyset,\{\emptyset\}\})$
(e) $\{\emptyset\} \subseteq \mathscr{P}(\{\emptyset,\{\emptyset\}\})$
(f) $\{\{\emptyset\}\} \subseteq \mathscr{P}(\{\emptyset,\{\emptyset\}\})$
(g) $3 \in \mathbb{Q}$
(h) $\{3\} \subseteq \mathscr{P}(\mathbb{Q})$
(i) $\{3\} \in \mathscr{P}(\mathbb{Q})$
(j) $\{\{3\}\} \subseteq \mathscr{P}(\mathbb{Q})$
(a) The power set

$$
\mathscr{P}(\{\emptyset,\{\emptyset\}\})=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\} .
$$

So, this is true.
(b) This is also true.
(c) This is, yet again, true.
(d) This is true (the empty set is a subset of all sets).
(e) This is true becasue \emptyset is in the power set.
(f) This is true because $\{\emptyset\}$ is in the power set.
(g) This is true, $3=\frac{3}{1}$ is rational.
(h) This is false: 3 is not in the power set of rationals, whose elements are subsets of rationals.
(i) This is true.
(j) This is true (it means the same thing as the line above).

