2.2.6: Give an example of nonempty sets <i>A</i> , <i>B</i> , and <i>C</i> such that:	
(a) $C \subseteq A \cup B$ and $A \cap B \nsubseteq C$	(c) $A \cup B \subseteq C$ and $C \nsubseteq B$
(b) $A \subseteq B$ and $C \subseteq A \cap B$	(d) $A \nsubseteq B \cup C$, $B \nsubseteq A \cup C$, and $C \subseteq A \cup B$

2.2.11: Provide counterexamples for each of the following:

(a) If $A \cup C \subseteq B \cup C$, then $A \subseteq B$

(b) If $A \cap C \subseteq B \cap C$, then $A \subseteq B$

(c) If $(A - B) \cap (A - C) = \emptyset$, then $B \cap C = \emptyset$.

2.3.7: Let $\mathscr{A} = \{A_{\alpha} : \alpha \in \Delta\}$ be a family of sets, and let *B* be a set. Prove that

$$B \cap \bigcup_{\alpha \in \Delta} A_{\alpha} = \bigcup_{\alpha \in \Delta} (B \cap A_{\alpha}).$$