2.2.6: Give an example of nonempty sets A, B, and C such that:
(a) $C \subseteq A \cup B$ and $A \cap B \nsubseteq C$
(c) $A \cup B \subseteq C$ and $C \nsubseteq B$
(b) $A \subseteq B$ and $C \subseteq A \cap B$
(d) $A \nsubseteq B \cup C, B \nsubseteq A \cup C$, and $C \subseteq A \cup B$
2.2.11: Provide counterexamples for each of the following:
(a) If $A \cup C \subseteq B \cup C$, then $A \subseteq B$
(b) If $A \cap C \subseteq B \cap C$, then $A \subseteq B$
(c) If $(A-B) \cap(A-C)=\emptyset$, then $B \cap C=\emptyset$.
2.3.7: Let $\mathscr{A}=\left\{A_{\alpha}: \alpha \in \Delta\right\}$ be a family of sets, and let B be a set. Prove that

$$
B \cap \bigcup_{\alpha \in \Delta} A_{\alpha}=\bigcup_{\alpha \in \Delta}\left(B \cap A_{\alpha}\right)
$$

