2.2.6: Give an example of nonempty sets <i>A</i> , <i>B</i> , and <i>C</i> such that:		
(a) C	$C \subseteq A \cup B$ and $A \cap B \nsubseteq C$	(c) $A \cup B \subseteq C$ and $C \nsubseteq B$
(b) <i>A</i>	$a \subseteq B$ and $C \subseteq A \cap B$	(d) $A \nsubseteq B \cup C, B \nsubseteq A \cup C$, and $C \subseteq A \cup B$

- (a) Here, we can put $A = \{a, b\}, B = \{b, c\}, and C = \{a, c\}.$
- (b) Here, we can put $A = \{a, c\}$, $B = \{a, b, c\}$, and $C = \{c\}$. It's worth noting that, if $A \subseteq B$, then $A \cap B = A$, so the second requirement is $C \subseteq A$.
- (c) Here, we can put $A = \{a\}$, $B = \{b\}$, and $C = \{a, b\}$.
- (d) Here, we can put $A = \{a, b\}$, $B = \{c, d\}$, and $C = \{a, c\}$. Then $b \notin B \cup C$ and $d \notin A \cup C$, but $C \subseteq A \cup B$.

2.2.11: Provide counterexamples for each of the following:

- (a) If $A \cup C \subseteq B \cup C$, then $A \subseteq B$
- (b) If $A \cap C \subseteq B \cap C$, then $A \subseteq B$
- (c) If $(A B) \cap (A C) = \emptyset$, then $B \cap C = \emptyset$.
- (a) Suppose $A = \{a\}$, $B = \{b\}$, and $C = \{a, b, c\}$; then $A \cup C = B \cup C = C$, but $A \nsubseteq B$ (in fact, A and B are disjoint!).
- (b) Suppose $A = \{a\}, B = \{b\}$ and $C = \{c\}$; then $A \cap C = B \cap C = A \cap B = \emptyset$, so in particular $A \nsubseteq B$.
- (c) Suppose $A = \{b, c\}$, $B = \{a, c\}$, and $C = \{a, b\}$; then $A B = \{b\}$ and $A C = \{c\}$, which are disjoint, but $B \cap C = \{a\} \neq \emptyset$.

2.3.7: Let $\mathscr{A} = \{A_{\alpha} : \alpha \in \Delta\}$ be a family of sets, and let *B* be a set. Prove that

$$B \cap \bigcup_{\alpha \in \Delta} A_{\alpha} = \bigcup_{\alpha \in \Delta} (B \cap A_{\alpha}).$$

An element *x* is in the set $B \cap \bigcup_{\alpha \in \Delta} A_{\alpha}$ if $x \in B$ and there exists some (not necessarily unique) $\xi \in \Delta$ such that $x \in A_{\xi}$. This can happen if and only if there exists some (not necessarily unique) $\xi \in \Delta$ such that $x \in B \cap A_{\xi}$ (because the choice of ξ is independent of the truth value of $x \in B$ —we can "move the quantifier outside"), which is exactly the condition that *x* is in the set $\bigcup_{\alpha \in \Delta} (B \cap A_{\alpha})$. Since they have logically equivalent membership conditions, the sets are equal.

To argue another way, if $x \in B$ and $x \in A_{\xi}$, then $x \in B \cap A_{\xi}$, so the left is a subset of the right, and if $x \in B \cap A_{\xi}$, then $x \in B$ and $x \in A_{\xi}$, so the right is a subset of the left, also establishing equality.