Sets II

2.2.6: Give an example of nonempty sets A, B, and C such that:
(a) $C \subseteq A \cup B$ and $A \cap B \nsubseteq C$
(c) $A \cup B \subseteq C$ and $C \nsubseteq B$
(b) $A \subseteq B$ and $C \subseteq A \cap B$
(d) $A \nsubseteq B \cup C, B \nsubseteq A \cup C$, and $C \subseteq A \cup B$
(a) Here, we can put $A=\{a, b\}, B=\{b, c\}$, and $C=\{a, c\}$.
(b) Here, we can put $A=\{a, c\}, B=\{a, b, c\}$, and $C=\{c\}$. It's worth noting that, if $A \subseteq B$, then $A \cap B=A$, so the second requirement is $C \subseteq A$.
(c) Here, we can put $A=\{a\}, B=\{b\}$, and $C=\{a, b\}$.
(d) Here, we can put $A=\{a, b\}, B=\{c, d\}$, and $C=\{a, c\}$. Then $b \notin B \cup C$ and $d \notin A \cup C$, but $C \subseteq A \cup B$.
2.2.11: Provide counterexamples for each of the following:
(a) If $A \cup C \subseteq B \cup C$, then $A \subseteq B$
(b) If $A \cap C \subseteq B \cap C$, then $A \subseteq B$
(c) If $(A-B) \cap(A-C)=\emptyset$, then $B \cap C=\emptyset$.
(a) Suppose $A=\{a\}, B=\{b\}$, and $C=\{a, b, c\}$; then $A \cup C=B \cup C=C$, but $A \nsubseteq B$ (in fact, A and B are disjoint!).
(b) Suppose $A=\{a\}, B=\{b\}$ and $C=\{c\}$; then $A \cap C=B \cap C=A \cap B=\emptyset$, so in particular $A \nsubseteq B$.
(c) Suppose $A=\{b, c\}, B=\{a, c\}$, and $C=\{a, b\}$; then $A-B=\{b\}$ and $A-C=\{c\}$, which are disjoint, but $B \cap C=\{a\} \neq \emptyset$.
2.3.7: Let $\mathscr{A}=\left\{A_{\alpha}: \alpha \in \Delta\right\}$ be a family of sets, and let B be a set. Prove that

$$
B \cap \bigcup_{\alpha \in \Delta} A_{\alpha}=\bigcup_{\alpha \in \Delta}\left(B \cap A_{\alpha}\right) .
$$

An element x is in the set $B \cap \bigcup_{\alpha \in \Delta} A_{\alpha}$ if $x \in B$ and there exists some (not necessarily unique) $\xi \in \Delta$ such that $x \in A_{\xi}$. This can happen if and only if there exists some (not necessarily unique) $\xi \in \Delta$ such that $x \in B \cap A_{\xi}$ (because the choice of ξ is independent of the truth value of $x \in B$-we can "move the quantifier outside"), which is exactly the condition that x is in the set $\bigcup_{\alpha \in \Delta}\left(B \cap A_{\alpha}\right)$. Since they have logically equivalent membership conditions, the sets are equal.

To argue another way, if $x \in B$ and $x \in A_{\xi}$, then $x \in B \cap A_{\xi}$, so the left is a subset of the right, and if $x \in B \cap A_{\xi}$, then $x \in B$ and $x \in A_{\xi}$, so the right is a subset of the left, also establishing equality.

