2.1.18: Let *A* and *B* be sets. Prove that

(a) A = B if and only if $\mathscr{P}(A) = \mathscr{P}(B)$.

(b) if A is a proper subset of B, then $\mathscr{P}(A)$ is a proper subset of $\mathscr{P}(B)$.

2.3.14: Let \mathscr{A} be a family of pairwise disjoint sets. Prove that if $\mathscr{B} \subseteq \mathscr{A}$, then \mathscr{B} must be a pairwise disjoint family of sets.

2.3.17: Suppose $\mathscr{A} = \{A_i : i \in \mathbb{N}\}$ is a family of sets such that for all $i, j \in \mathbb{N}$, if $i \leq j$, then $A_j \subseteq A_i$. (Such a family is called a *nested family* of sets.)

(a) Prove that for every $k \in \mathbb{N}$, $\bigcap_{i=1}^{k} A_i = A_k$.

2.4.5: Use the PMI to prove the following for all natural numbers:
(a) n³ + 5n + 6 is divisible by 3
(b) 4ⁿ - 1 is divisible by 3
(c) n³ - n is divisible by 6
(d) (n³ - n)(n + 2) is divisible by 12