Sets III

2.1.18: Let A and B be sets. Prove that
(a) $A=B$ if and only if $\mathscr{P}(A)=\mathscr{P}(B)$.
(b) if A is a proper subset of B, then $\mathscr{P}(A)$ is a proper subset of $\mathscr{P}(B)$.
(a) If $A=B$, then clearly $\mathscr{P}(A)=\mathscr{P}(B)$. Now suppose $\mathscr{P}(A)=\mathscr{P}(B)$. That is, we are guaranteed that if $S \subseteq A$, then $S \subseteq B$. Suppose $a \in A$; then $\{a\} \subseteq A$, so $\{a\} \subseteq B$. This implies that $a \in B$. Similarly, if $b \in B$, then $\{b\} \subseteq B$, so $\{b\} \subseteq A$, so $b \in A$. Thus, $A=B$.
(b) Suppose $b \in B-A$ (this must happen if $A \subsetneq B$). We know $\mathscr{P}(A) \subseteq \mathscr{P}(B)$. Also, $\{b\} \in \mathscr{P}(B)$. However, $\{b\} \notin \mathscr{P}(A)$, as $b \notin A$ by construction. Thus, $\mathscr{P}(A) \subsetneq \mathscr{P}(B)$.
2.3.14: Let \mathscr{A} be a family of pairwise disjoint sets. Prove that if $\mathscr{B} \subseteq \mathscr{A}$, then \mathscr{B} must be a pairwise disjoint family of sets.

Suppose $A, B \in \mathscr{B}$ are sets. Then $A, B \in \mathscr{A}$ as well; since the elements of \mathscr{A} are pairwise disjoint, either $A=B$ or $A \cap B=\emptyset$. Since A and B were arbitrary elements of \mathscr{B}, this shows \mathscr{B} is pairwise disjoint as well.
2.3.17: \quad Suppose $\mathscr{A}=\left\{A_{i}: i \in \mathbb{N}\right\}$ is a family of sets such that for all $i, j \in \mathbb{N}$, if $i \leq j$, then $A_{j} \subseteq A_{i}$. (Such a family is called a nested family of sets.)
(a) Prove that for every $k \in \mathbb{N}, \bigcap_{i=1}^{k} A_{i}=A_{k}$.
(a) We certainly have that $\bigcap_{i=1}^{k} A_{i} \subseteq A_{k}$, as it is one of the members of the intersection. Now suppose $a \in A_{k}$, and consider $j \leq k$. Then by the nested condition, we have $A_{k} \subseteq A_{j}$, so in particular $a \in A_{j}$. This is true for all $j \leq k$, so $a \in \bigcap_{i=1}^{k} A_{i}$; since a was arbitrary, $A_{k} \subseteq \bigcap_{i=1}^{k} A_{i}$. Thus, the two sets are equal.
2.4.5: Use the PMI to prove the following for all natural numbers:
(a) $n^{3}+5 n+6$ is divisible by 3
(c) $n^{3}-n$ is divisible by 6
(b) $4^{n}-1$ is divisible by 3
(d) $\left(n^{3}-n\right)(n+2)$ is divisible by 12
(a) For $n=1$, the given expression is 12 , which 3 divides. Suppose $3 \mid n^{3}+5 n+6$. Then

$$
(n+1)^{3}+5(n+1)+6=\left(n^{3}+5 n+6\right)+3 n^{2}+3 n+6
$$

a sum of terms each divisible by 3 . Thus, the statement is true for all n.
(b) For $n=1$, the given expression is 3 , which 3 divides. Suppose $3 \mid 4^{n}-1$. Then

$$
4^{n+1}-1=4\left(4^{n}-1\right)+3,
$$

a sum of terms each divisible by 3. Thus, the statement is true for all n.
(c) For $n=1$, the given expression is 0 , which 6 (and all other integers) divides. Suppose $n^{3}-n=6 k$. Then

$$
(n+1)^{3}-(n+1)=n^{3}+3 n^{2}+2 n=\left(n^{3}-n\right)+3 n(n-1) .
$$

Now, $n(n-1)=2 j$ for some j (a previous result), so

$$
(n+1)^{3}-(n+1)=6(k+j) .
$$

Thus, the statement is true for all n.
(d) For $n=1$, the given expression is 0 , which 12 divides. Suppose $\left(n^{3}-n\right)(n+2)=12 k$. Then

$$
\left([n+1]^{3}-[n+1]\right)([n+1]+2)=n^{4}+3 n^{3}+2 n^{2}+3 n^{3}+9 n^{2}+6 n=n^{4}+6 n^{3}+11 n^{2}+6 n=\left(n^{3}-n\right)(n+2)+4 n(n+1)(n+2) .
$$

Now, one of $n, n+1$, and $n+2$ is divisible by three. Thus (and this might merit a more careful proof), $4 n(n+1)(n+2)=12 j$, so

$$
\left([n+1]^{3}-[n+1]\right)([n+1]+2)=12(k+j) .
$$

The given statement is therefore true for all n.

