- 2.1.18: Let *A* and *B* be sets. Prove that
 - (a) A = B if and only if $\mathscr{P}(A) = \mathscr{P}(B)$.
 - (b) if *A* is a proper subset of *B*, then $\mathscr{P}(A)$ is a proper subset of $\mathscr{P}(B)$.
- (a) If A = B, then clearly $\mathscr{P}(A) = \mathscr{P}(B)$. Now suppose $\mathscr{P}(A) = \mathscr{P}(B)$. That is, we are guaranteed that if $S \subseteq A$, then $S \subseteq B$. Suppose $a \in A$; then $\{a\} \subseteq A$, so $\{a\} \subseteq B$. This implies that $a \in B$. Similarly, if $b \in B$, then $\{b\} \subseteq B$, so $\{b\} \subseteq A$, so $b \in A$. Thus, A = B.
- (b) Suppose $b \in B-A$ (this must happen if $A \subsetneq B$). We know $\mathscr{P}(A) \subseteq \mathscr{P}(B)$. Also, $\{b\} \in \mathscr{P}(B)$. However, $\{b\} \notin \mathscr{P}(A)$, as $b \notin A$ by construction. Thus, $\mathscr{P}(A) \subsetneq \mathscr{P}(B)$.

2.3.14: Let \mathscr{A} be a family of pairwise disjoint sets. Prove that if $\mathscr{B} \subseteq \mathscr{A}$, then \mathscr{B} must be a pairwise disjoint family of sets.

Suppose $A, B \in \mathscr{B}$ are sets. Then $A, B \in \mathscr{A}$ as well; since the elements of \mathscr{A} are pairwise disjoint, either A = B or $A \cap B = \emptyset$. Since A and B were arbitrary elements of \mathscr{B} , this shows \mathscr{B} is pairwise disjoint as well.

2.3.17: Suppose $\mathscr{A} = \{A_i : i \in \mathbb{N}\}\$ is a family of sets such that for all $i, j \in \mathbb{N}$, if $i \leq j$, then $A_j \subseteq A_i$. (Such a family is called a *nested family* of sets.)

(a) Prove that for every $k \in \mathbb{N}$, $\bigcap_{i=1}^{k} A_i = A_k$.

(a) We certainly have that $\bigcap_{i=1}^{k} A_i \subseteq A_k$, as it is one of the members of the intersection. Now suppose $a \in A_k$, and consider $j \leq k$. Then by the nested condition, we have $A_k \subseteq A_j$, so in particular $a \in A_j$. This is true for all $j \leq k$, so $a \in \bigcap_{i=1}^{k} A_i$; since *a* was arbitrary, $A_k \subseteq \bigcap_{i=1}^{k} A_i$. Thus, the two sets are equal.

2.4.5: Use the PMI to prove the following for all natural numbers:

(a) $n^3 + 5n + 6$ is divisible by 3	(c) $n^3 - n$ is divisible by 6
(b) $4^n - 1$ is divisible by 3	(d) $(n^3 - n)(n + 2)$ is divisible by 12

(a) For n = 1, the given expression is 12, which 3 divides. Suppose $3 | n^3 + 5n + 6$. Then

$$(n+1)^3 + 5(n+1) + 6 = (n^3 + 5n + 6) + 3n^2 + 3n + 6,$$

a sum of terms each divisible by 3. Thus, the statement is true for all n.

(b) For n = 1, the given expression is 3, which 3 divides. Suppose $3 \mid 4^n - 1$. Then

$$4^{n+1} - 1 = 4(4^n - 1) + 3,$$

a sum of terms each divisible by 3. Thus, the statement is true for all n.

(c) For n = 1, the given expression is 0, which 6 (and all other integers) divides. Suppose $n^3 - n = 6k$. Then

$$(n+1)^3 - (n+1) = n^3 + 3n^2 + 2n = (n^3 - n) + 3n(n-1).$$

Now, n(n-1) = 2j for some j (a previous result), so

$$(n+1)^3 - (n+1) = 6(k+j).$$

Thus, the statement is true for all *n*.

(d) For n = 1, the given expression is 0, which 12 divides. Suppose $(n^3 - n)(n + 2) = 12k$. Then

 $([n+1]^3 - [n+1])([n+1]+2) = n^4 + 3n^3 + 2n^2 + 3n^3 + 9n^2 + 6n = n^4 + 6n^3 + 11n^2 + 6n = (n^3 - n)(n+2) + 4n(n+1)(n+2).$

Now, one of n, n + 1, and n + 2 is divisible by three. Thus (and this might merit a more careful proof), 4n(n+1)(n+2) = 12j, so

$$([n+1]^3 - [n+1])([n+1]+2) = 12(k+j).$$

The given statement is therefore true for all *n*.