
Math 8

Induction

2.5.7: Use the Principle of Complete Induction to prove the following properties of the Fibonacci numbers:

(a) fn is a natural number for all natural numbers n.

(b) fn+6 = 4fn+3 + fn for all natural numbers n.

(c) For every natural number a, fafn + fa+1fn+1 = fa+n+1 for all natural numbers n.

(a) We know f1 = f2 = 1 ∈ N; consider n > 2. Suppose fm ∈ N for all natural numbers m < n. In particular, fn−1
and fn−2 are natural. Since fn = fn−1 +fn−2 and the sum of natural numbers is natural, fn ∈ N. By the PCI, this
is therefore true for all n ∈ N.

(b) We know 13 = f7 = 4f4 + f1 = 4(3) + 1 and 21 = f8 = 4f5 + f2 = 4(5) + 1. Suppose fm+6 = 4fm+3 + fm for all m < n.
Then we compute for n > 2

fn+6 = fn+5 + fn+4

= 4f(n−1)+3 + fn−1 + 4f(n−2)+3 + fn−2

= 4(fn+2 + fn+1) + (fn−1 + fn−2)

= 4fn+3 + fn.

So, the statement is true for all n ∈ N.

2.6.13: Prove the number of permutations of a subcollection of r objects from a larger collection of n
objects is n!

(n−r)!

(b) by induction on n.

(b) If n = 1, then the only choice for r is also 1, and there is 1 permutation because there is one possible order,
and 1 = 1!

0! . Now suppose the number of permutations of r objects from n is n!
(n−r)! for 1 ≤ r ≤ n. If we had

n + 1 objects and wished to construct a permutation of r of them (for 1 ≤ r ≤ n + 1), we could do so by first
choosing one of the n+1 objects to be first, then constructing a permutation of r−1 of the remaining n objects
(and 0 ≤ r ≤ n). If r = 1, we’re done after the first choice, and had n+ 1 = (n+1)!

(n+1−1)! . Otherwise, the number of
options is

(n+ 1)
n!

(n− (r − 1))!
=

(n+ 1)!
((n+ 1)− r)!

.

By the Principle of Mathematical Induction, this formula therefore holds for all n ∈ N.
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2.6.24: The nth pyramid number, pn, is the number of balls of equal diameter that can be stacked in a
pyramid whose base is an n by n square. The first few pyramid numbers are p1 = 1, p2 = 5, p3 = 14, and
p4 = 30. Show that

(a) pn = 12 + 22 + · · ·+n2 = n(n+1)(2n+1)
6 for every natural number n.

(b) pn =
(n+2

3
)

+
(n+1

3
)

for n ≥ 2.

(a) We will take the first equality more or less for granted: to construct a pyramid on a base of length n, we
first lay down n2 balls, then construct a pyramid of base length n − 1 on top by putting a ball between
every square formed by four adjacent balls in the base. Now, clearly 12 = 1 = 1(2)(3)

6 . Suppose we know

12 + 22 + · · ·+n2 = n(n+2)(2n+1)
6 . Then

12 + 22 + · · ·+n2 + (n+ 1)2 =
n(n+ 2)(2n+ 1)

6
+ (n+ 1)2

=
2n3 + 9n2 + 13n+ 6

6

=
(n+ 1)(2n2 + 7n+ 6)

6

=
(n+ 1)(n+ 2)(2n+ 3)

6
.

(b) We prove first that
(n+1

3
)

+ (n+ 1)2 =
(n+3

3
)
. This may be done purely algebraically:(

n+ 1
3

)
+ (n+ 1)2 =

(n+ 1)n(n− 1)
6

+ (n+ 1)2 =
n+ 1

6

(
n2 + 5n+ 6

)
=

(n+ 1)(n+ 2)(n+ 3)
6

=
(
n+ 3

3

)
.

We could also construct a (contrived) combinatorial task to prove this: we must either produce a set of three
objects from n + 1, or paint a black and a white mark on two objects, which may coincide. The left hand
expression counts this directly: there are

(n+1
3

)
ways to produce the set, and (n+1) choices for the black mark

times (n+ 1) for the white. The right hand side counts indirectly: we add two “placeholder” objects p and q
to the collection and choose three from the augmented set; if p is chosen, we mark the chosen objects such
that the smaller one chosen gets the black mark, if q is chosen similarly but the smaller gets the white mark.
This represents the same situation: if neither p nor q is chosen we have a set of three objects, if exactly one is
chosen we have two distinct objects and a consistent way of determining which has which mark, and if both
are chosen we have a single object which receives both marks.

With either proof, we have a useful lemma. Now, if n = 2, then p2 = 5 =
(4
3
)

+
(3
3
)

= 4 + 1. Assume pn has the
given form, and consider

pn+1 = pn + (n+ 1)2 =
(
n+ 2

3

)
+
(
n+ 1

3

)
+ (n+ 1)2 =

(
n+ 3

3

)
+
(
n+ 2

3

)
.

Thus, by the Principle of Mathematical Induction, pn has the given form for all n ∈ N.

2


