Induction

2.5.7: Use the Principle of Complete Induction to prove the following properties of the Fibonacci numbers:
(a) f_{n} is a natural number for all natural numbers n.
(b) $f_{n+6}=4 f_{n+3}+f_{n}$ for all natural numbers n.
(c) For every natural number $a, f_{a} f_{n}+f_{a+1} f_{n+1}=f_{a+n+1}$ for all natural numbers n.
(a) We know $f_{1}=f_{2}=1 \in \mathbb{N}$; consider $n>2$. Suppose $f_{m} \in \mathbb{N}$ for all natural numbers $m<n$. In particular, f_{n-1} and f_{n-2} are natural. Since $f_{n}=f_{n-1}+f_{n-2}$ and the sum of natural numbers is natural, $f_{n} \in \mathbb{N}$. By the PCI, this is therefore true for all $n \in \mathbb{N}$.
(b) We know $13=f_{7}=4 f_{4}+f_{1}=4(3)+1$ and $21=f_{8}=4 f_{5}+f_{2}=4(5)+1$. Suppose $f_{m+6}=4 f_{m+3}+f_{m}$ for all $m<n$. Then we compute for $n>2$

$$
\begin{aligned}
f_{n+6} & =f_{n+5}+f_{n+4} \\
& =4 f_{(n-1)+3}+f_{n-1}+4 f_{(n-2)+3}+f_{n-2} \\
& =4\left(f_{n+2}+f_{n+1}\right)+\left(f_{n-1}+f_{n-2}\right) \\
& =4 f_{n+3}+f_{n} .
\end{aligned}
$$

So, the statement is true for all $n \in \mathbb{N}$.
2.6.13: \quad Prove the number of permutations of a subcollection of r objects from a larger collection of n objects is $\frac{n!}{(n-r)!}$
(b) by induction on n.
(b) If $n=1$, then the only choice for r is also 1 , and there is 1 permutation because there is one possible order, and $1=\frac{1!}{0!}$. Now suppose the number of permutations of r objects from n is $\frac{n!}{(n-r)!}$ for $1 \leq r \leq n$. If we had $n+1$ objects and wished to construct a permutation of r of them (for $1 \leq r \leq n+1$), we could do so by first choosing one of the $n+1$ objects to be first, then constructing a permutation of $r-1$ of the remaining n objects (and $0 \leq r \leq n$). If $r=1$, we're done after the first choice, and had $n+1=\frac{(n+1)!}{(n+1-1)!}$. Otherwise, the number of options is

$$
(n+1) \frac{n!}{(n-(r-1))!}=\frac{(n+1)!}{((n+1)-r)!}
$$

By the Principle of Mathematical Induction, this formula therefore holds for all $n \in \mathbb{N}$.
2.6.24: The nth pyramid number, p_{n}, is the number of balls of equal diameter that can be stacked in a pyramid whose base is an n by n square. The first few pyramid numbers are $p_{1}=1, p_{2}=5, p_{3}=14$, and $p_{4}=30$. Show that
(a) $p_{n}=1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for every natural number n.
(b) $p_{n}=\binom{n+2}{3}+\binom{n+1}{3}$ for $n \geq 2$.
(a) We will take the first equality more or less for granted: to construct a pyramid on a base of length n, we first lay down n^{2} balls, then construct a pyramid of base length $n-1$ on top by putting a ball between every square formed by four adjacent balls in the base. Now, clearly $1^{2}=1=\frac{1(2)(3)}{6}$. Suppose we know $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+2)(2 n+1)}{6}$. Then

$$
\begin{aligned}
1^{2}+2^{2}+\cdots+n^{2}+(n+1)^{2} & =\frac{n(n+2)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{2 n^{3}+9 n^{2}+13 n+6}{6} \\
& =\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

(b) We prove first that $\binom{n+1}{3}+(n+1)^{2}=\binom{n+3}{3}$. This may be done purely algebraically:

$$
\binom{n+1}{3}+(n+1)^{2}=\frac{(n+1) n(n-1)}{6}+(n+1)^{2}=\frac{n+1}{6}\left(n^{2}+5 n+6\right)=\frac{(n+1)(n+2)(n+3)}{6}=\binom{n+3}{3}
$$

We could also construct a (contrived) combinatorial task to prove this: we must either produce a set of three objects from $n+1$, or paint a black and a white mark on two objects, which may coincide. The left hand expression counts this directly: there are $\binom{n+1}{3}$ ways to produce the set, and $(n+1)$ choices for the black mark times $(n+1)$ for the white. The right hand side counts indirectly: we add two "placeholder" objects p and q to the collection and choose three from the augmented set; if p is chosen, we mark the chosen objects such that the smaller one chosen gets the black mark, if q is chosen similarly but the smaller gets the white mark. This represents the same situation: if neither p nor q is chosen we have a set of three objects, if exactly one is chosen we have two distinct objects and a consistent way of determining which has which mark, and if both are chosen we have a single object which receives both marks.
With either proof, we have a useful lemma. Now, if $n=2$, then $p_{2}=5=\binom{4}{3}+\binom{3}{3}=4+1$. Assume p_{n} has the given form, and consider

$$
p_{n+1}=p_{n}+(n+1)^{2}=\binom{n+2}{3}+\binom{n+1}{3}+(n+1)^{2}=\binom{n+3}{3}+\binom{n+2}{3} .
$$

Thus, by the Principle of Mathematical Induction, p_{n} has the given form for all $n \in \mathbb{N}$.

