Combinatorial Proofs

2.6.22:

(a) Give a combinatorial proof that if n is an odd integer, then the number of ways to select an even number of objects from a set of n objects is equal to the number of ways to select an odd number of objects.
(b) Give a combinatorial proof of Vandermonde's identity: For positive integers m and n and an integer r such that $0 \leq r \leq n+m,\binom{n+m}{r}=\binom{n}{0}\binom{m}{r}+\binom{n}{1}\binom{m}{r-1}+\binom{n}{2}\binom{m}{r-2}+\cdots+\binom{n}{r}\binom{m}{0}$.
(c) Prove that $\binom{2 n}{n}+\binom{2 n}{n+1}=\frac{1}{2}\binom{2 n+2}{n+1}$.
2.6.23: Give a combinatorial argument that $n^{2}=2\binom{n}{2}+n$.

