Relations

3.1.3: \quad Find the domain and range of the relation W on \mathbb{R} given by $x W y$ if
(a) $y=2 x+1$
(c) $y=\sqrt{x-1}$
(b) $y=x^{2}+3$
(d) $y=\frac{1}{x^{2}}$
3.1.6: Find the inverse of each relation. Express the inverse as the set of all pairs (x, y) subject to some condition.
(a) $R_{1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=x\}$
(b) $R_{2}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=-5 x+2\}$
(f) $R_{6}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y<x+1\}$
(g) $R_{7}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y>3 x-4\}$
(h) $R_{8}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=\frac{2 x}{x-2}\right\}$
3.1.11: \quad Let R be a relation from A to B and S be a relation from B to C.
(a) Prove that $\operatorname{Rng}\left(R^{-1}\right)=\operatorname{Dom}(R)$.
(b) Prove that $\operatorname{Dom}(S \circ R) \subseteq \operatorname{Dom}(R)$.

