3.1.3:	1.3: Find the domain and range of the relation <i>W</i> on \mathbb{R} given by <i>xWy</i> if	
(a) y =	= 2x + 1	(c) $y = \sqrt{x-1}$
(b) <i>y</i> :	$=x^{2}+3$	(d) $y = \frac{1}{x^2}$

- (a) The expression on the right is defined for all $x \in \mathbb{R}$, so the domain is \mathbb{R} , and we can solve for x, yielding $x = \frac{1}{2}(y-1)$, which is defined for all $y \in \mathbb{R}$. This tells us the inverse relation explicitly, and shows that the range is also \mathbb{R} .
- (b) The expression on the right is defined for all $x \in \mathbb{R}$, so the domain is \mathbb{R} . We know that $x^2 \ge 0$ for all $x \in \mathbb{R}$, so the range is contained in $\{y \in \mathbb{R} : y \ge 3\}$. In fact, this is the range, as any such y is achieved by choosing $x = \sqrt{y-3}$ (or $x = -\sqrt{y-3}$); it is important to note that the condition $y \ge 3$ is necessary and sufficient to ensure this is defined in the reals.
- (c) The expression on the right is defined for all $x \ge 1$, so the domain is $\{x \in \mathbb{R} : x \ge 1\}$. If $y \ge 0$, then x W y if $x = y^2 + 1$ (and the non-negativity condition is crucial because we are taking the positive square root), so the range is $\{y \in \mathbb{R} : y \ge 0\}$.
- (d) The expression on the right is defined for $x \in \mathbb{R} \{0\}$, so $\mathbb{R} \{0\}$ is the domain. Since $x^2 > 0$ for $x \neq 0$, the range is contained in $\{y \in \mathbb{R} : y > 0\}$; in fact this is the range, as setting $x = \frac{1}{\sqrt{y}}$ achieves y if y > 0.

3.1.6: Find the inverse of each relation. Express the inverse as the set of all pairs (x, y) subject to some condition.

- (a) $R_1 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x\}$
- (b) $R_2 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = -5x + 2\}$
- (f) $R_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y < x + 1\}$
- (g) $R_7 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y > 3x 4\}$
- (h) $R_8 = \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : y = \frac{2x}{x-2} \right\}$
- (a) Since $x R_1 y$ iff y = x iff $y R_1 x$, the inverse relation here is $R_1^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = x\}$ (that is, $R_1 = R_1^{-1}$). Technically, we've exchanged the roles of x and y (but equality is a symmetric relation).
- (b) Here, $y R_2 x$ iff x = -5y + 2, or $y = \frac{1}{5}(2-x)$, so $R_2^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = \frac{1}{5}(2-x)\}$. Note that we've again exchanged the roles of x and y.
- (f) Here, $y R_6 x$ iff x < y + 1, or y > x 1, so $R_6^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y > x 1\}$.
- (g) Here, $y R_7 x$ iff x > 3y 4, or $y < \frac{1}{3}(x + 4)$, so $R_7^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y < \frac{1}{3}(x + 4)\}$.
- (h) Here, $y R_8 x$ iff $x = \frac{2y}{y-2}$, or $y \neq 2$ and $y = \frac{2x}{x-2}$. We note that attempting to solve $2 = \frac{2x}{x-2}$ for x fails: there is no x such that $y = 2 = \frac{2x}{x-2}$. Thus, we can write $R_8^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = \frac{2x}{x-2}\}$. As an interesting fact, we can write $R_8 = R_8^{-1} = \{(x, y) \in \mathbb{R} \times \mathbb{R} : 2x xy + 2y = 0 \land x \neq 2 \land y \neq 2\}$ to highlight the symmetry in the relation.

3.1.11: Let *R* be a relation from *A* to *B* and *S* be a relation from *B* to *C*.

- (a) Prove that $\operatorname{Rng}(R^{-1}) = \operatorname{Dom}(R)$.
- (b) Prove that $Dom(S \circ R) \subseteq Dom(R)$.
- (a) If $y \in \text{Rng}(R^{-1})$, that is equivalent to the existence of an x such that $xR^{-1}y$. This happens if and only if there is an x such that yRx, which is the definition of $y \in \text{Dom}(R)$. Since the logical connectives here were biconditionals, we've shown equality (the other direction is automatic).
- (b) Suppose $x \in Dom(S \circ R)$. This means that there is some $y \in B$ and $z \in C$ such that x R y and y S z. Ignoring the role of z, the fact that x R y for some y shows that $x \in Dom(R)$. Since x was arbitrary among $Dom(S \circ R)$, this shows $Dom(S \circ R) \subseteq Dom(R)$.