Relations

3.1.3: \quad Find the domain and range of the relation W on \mathbb{R} given by $x W y$ if
(a) $y=2 x+1$
(c) $y=\sqrt{x-1}$
(b) $y=x^{2}+3$
(d) $y=\frac{1}{x^{2}}$
(a) The expression on the right is defined for all $x \in \mathbb{R}$, so the domain is \mathbb{R}, and we can solve for x, yielding $x=\frac{1}{2}(y-1)$, which is defined for all $y \in \mathbb{R}$. This tells us the inverse relation explicitly, and shows that the range is also \mathbb{R}.
(b) The expression on the right is defined for all $x \in \mathbb{R}$, so the domain is \mathbb{R}. We know that $x^{2} \geq 0$ for all $x \in \mathbb{R}$, so the range is contained in $\{y \in \mathbb{R}: y \geq 3\}$. In fact, this is the range, as any such y is achieved by choosing $x=\sqrt{y-3}$ (or $x=-\sqrt{y-3}$); it is important to note that the condition $y \geq 3$ is necessary and sufficient to ensure this is defined in the reals.
(c) The expression on the right is defined for all $x \geq 1$, so the domain is $\{x \in \mathbb{R}: x \geq 1\}$. If $y \geq 0$, then $x W y$ if $x=y^{2}+1$ (and the non-negativity condition is crucial because we are taking the positive square root), so the range is $\{y \in \mathbb{R}: y \geq 0\}$.
(d) The expression on the right is defined for $x \in \mathbb{R}-\{0\}$, so $\mathbb{R}-\{0\}$ is the domain. Since $x^{2}>0$ for $x \neq 0$, the range is contained in $\{y \in \mathbb{R}: y>0\}$; in fact this is the range, as setting $x=\frac{1}{\sqrt{y}}$ achieves y if $y>0$.
3.1.6: Find the inverse of each relation. Express the inverse as the set of all pairs (x, y) subject to some condition.
(a) $R_{1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=x\}$
(b) $R_{2}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=-5 x+2\}$
(f) $R_{6}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y<x+1\}$
(g) $R_{7}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y>3 x-4\}$
(h) $R_{8}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=\frac{2 x}{x-2}\right\}$
(a) Since $x R_{1} y$ iff $y=x$ iff $y R_{1} x$, the inverse relation here is $R_{1}^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=x\}$ (that is, $R_{1}=R_{1}^{-1}$). Technically, we've exchanged the roles of x and y (but equality is a symmetric relation).
(b) Here, $y R_{2} x$ iff $x=-5 y+2$, or $y=\frac{1}{5}(2-x)$, so $R_{2}^{-1}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=\frac{1}{5}(2-x)\right\}$. Note that we've again exchanged the roles of x and y.
(f) Here, $y R_{6} x$ iff $x<y+1$, or $y>x-1$, so $R_{6}^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y>x-1\}$.
(g) Here, $y R_{7} x$ iff $x>3 y-4$, or $y<\frac{1}{3}(x+4)$, so $R_{7}^{-1}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: y<\frac{1}{3}(x+4)\right\}$.
(h) Here, $y R_{8} x$ iff $x=\frac{2 y}{y-2}$, or $y \neq 2$ and $y=\frac{2 x}{x-2}$. We note that attempting to solve $2=\frac{2 x}{x-2}$ for x fails: there is no x such that $y=2=\frac{2 x}{x-2}$. Thus, we can write $R_{8}^{-1}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=\frac{2 x}{x-2}\right\}$. As an interesting fact, we can write $R_{8}=R_{8}^{-1}=\{(x, y) \in \mathbb{R} \times \mathbb{R}: 2 x-x y+2 y=0 \wedge x \neq 2 \wedge y \neq 2\}$ to highlight the symmetry in the relation.
3.1.11: \quad Let R be a relation from A to B and S be a relation from B to C.
(a) Prove that $\operatorname{Rng}\left(R^{-1}\right)=\operatorname{Dom}(R)$.
(b) Prove that $\operatorname{Dom}(S \circ R) \subseteq \operatorname{Dom}(R)$.
(a) If $y \in \operatorname{Rng}\left(R^{-1}\right)$, that is equivalent to the existence of an x such that $x R^{-1} y$. This happens if and only if there is an x such that $y R x$, which is the definition of $y \in \operatorname{Dom}(R)$. Since the logical connectives here were biconditionals, we've shown equality (the other direction is automatic).
(b) Suppose $x \in \operatorname{Dom}(S \circ R)$. This means that there is some $y \in B$ and $z \in C$ such that $x R y$ and $y S z$. Ignoring the role of z, the fact that $x R y$ for some y shows that $x \in \operatorname{Dom}(R)$. Since x was arbitrary among $\operatorname{Dom}(S \circ R)$, this shows $\operatorname{Dom}(S \circ R) \subseteq \operatorname{Dom}(R)$.

