Bases

The Punch Line: We have an efficient way to define subspaces using collections of vectors in them.

Warm-Up: Are these sets linearly independent? What do they span?
(a) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]\right\} \subset \mathbb{R}^{3}$
(b) All vectors in \mathbb{R}^{42} with a zero in at least one component
(c) $\left\{\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 2 \\ -3 \\ 2\end{array}\right]\right\} \subset \mathbb{R}^{4}$
(d) $\left\{1, t-1,(t-1)^{2}+2(t-1)\right\} \subset \mathscr{R}_{2}$

Bases: A basis for a vector space is a linearly independent spanning set. Every finite spanning set contains a basis by removing linearly dependent vectors, and many finite linearly independent sets may be extended to be a basis by adding vectors (if eventually this process terminates in a spanning set).

1 Are these sets bases for the indicated vector spaces? If not, can vectors be removed (which?) or added (how many?) to make it a basis?
(a) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]\right\} \subset \mathbb{R}^{3}$
(c) $\left\{\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ 2 \\ -3 \\ 2\end{array}\right]\right\} \subset \mathbb{R}^{4}$
(b) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2\end{array}\right]\right\} \subset \mathbb{R}^{2}$
(d) $\left\{(t-1),(t-1)^{2},(t-1)^{3}\right\} \subset \mathscr{P}_{3}$

Finding Bases in \mathbb{R}^{n} : We're often interested in subspaces of the form $\operatorname{Nul} A$ and $\operatorname{Col} A$ for some matrix A. Fortunately, we can extract both by examining the Reduced Echelon Form of A.

A basis for $\mathrm{Col} A$ consists of all columns in A itself which correspond to pivot columns in the REF of A. A basis for $\mathrm{Nul} A$ consists of the vector parts corresponding to each free variable in a parametric vector representation of the solution set of the homogeneous equation $A \vec{x}=\overrightarrow{0}$, which we can find from the REF of A. Caution: In general, although free variables correspond to non-pivot columns in the REF, the basis for Nul A will not consist of those columns-in fact, they will often be of the wrong size!

2 Find bases for $\operatorname{Nul} A$ and $\operatorname{Col} A$ for each matrix below:
(a) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ -1 & -1\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$
(d) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where $a \neq 0$

