Coordinates

The Punch Line: If we have a basis of n vectors for any vector space, we can describe (and work with) any vector from the space or equation in it as if it were in \mathbb{R}^{n} all along!

Coordinate Vectors: If we have an ordered basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for vector space V, then any vector $v \in V$ has a unique representation

$$
\vec{v}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n},
$$

where each c_{i} is a real number. Then we can write the coordinate vector $[\vec{v}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]$.
1 Find the representation of the given vector \vec{v} with respect to the ordered basis \mathcal{B}.
(a) $\mathcal{B}=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}, \vec{v}=\left[\begin{array}{l}8 \\ 0 \\ 5\end{array}\right]$
(d) $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}, \vec{v}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$
(b) $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}, \vec{v}=t^{3}-2 t^{2}+t$
(e) $\mathcal{B}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$,
(c) $\mathcal{B}=\left\{1,(t-1),(t-1)^{2},(t-1)^{3}\right\}, \vec{v}=t^{3}-2 t^{2}+t$ $\vec{v}=\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right]$
(a) Here we have the second original component first, followed by the third original component, followed by the first original. Thus, $\left[\begin{array}{l}8 \\ 0 \\ 5\end{array}\right]=\left[\begin{array}{l}0 \\ 5 \\ 8\end{array}\right]_{\mathcal{B}}$.
(b) Here, we get the coordinate vector $\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0\end{array}\right]_{\mathcal{B}}$.
(c) We can rearrange our polynomial as $t^{3}-2 t^{2}+t=(t-1)^{2}+(t-1)^{3}$, so its coordinates in this basis are $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]_{\mathcal{B}}$.
(d) We can see that to match the middle component, we need $c_{1}=-\frac{1}{2}$. This leaves $\left[\begin{array}{c}3 / 2 \\ 0 \\ -3 / 2\end{array}\right]$, so $c_{2}=\frac{3}{2}$ and $\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]=$ $\left[\begin{array}{c}-1 / 2 \\ 3 / 2\end{array}\right]_{\mathcal{B}}$. This raises the important point that the number of entries in a coordinate vector depends on the length of the basis it relates to, not the original vector space!

Change of Coordinates in \mathbb{R}^{n} : If we have a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n}, we can recover the standard representation by using the matrix P whose columns are the (ordered) basis elements represented in the standard basis:

$$
P=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}
\end{array}\right] .
$$

The matrix P^{-1} takes vectors in the standard encoding and represents them with respect to \mathcal{B}. Thus, if \mathcal{C} is another basis for the same space and Q is the matrix bringing representations with respect to \mathcal{C} to the standard basis, then $Q^{-1} P$ is a matrix which takes a vector encoded with respect to \mathcal{B} and returns its encoding with respect to \mathcal{C}. That is,

$$
[\vec{v}]_{\mathcal{C}}=Q^{-1} P[\vec{v}]_{\mathcal{B}} .
$$

2 Compute the change of basis matrices for the following bases (into and from the standard basis).
(a) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}2 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$
(a) We have $P=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$, and $P^{-1}=P$ (which we can see as P just transposes the first and third components).
(b) We have $P=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$, and $P^{-1}=\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$ (check this!).
(c) We have $P=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ and $P^{-1}=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.
(d) We have $P=\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]$ and $P^{-1}=\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]$.

3 Compute the change of basis matrices between the two bases:
(a) $\mathcal{B}=\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}, \mathcal{C}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$
(b) $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}, \mathcal{C}=\left\{\left[\begin{array}{l}2 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$
(a) The transition from encoding in \mathcal{B} to \mathcal{C} is given by $\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$. Its inverse is $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$.
(b) The transition from \mathcal{B} to \mathcal{C} is given by $\left[\begin{array}{cc}3 & -1 \\ -5 & 2\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]=\left[\begin{array}{cc}2 & 4 \\ -3 & -7\end{array}\right]$. Its inverse is $\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right]=$ $\frac{1}{2}\left[\begin{array}{cc}7 & 4 \\ -3 & -2\end{array}\right]$.

