
Math 4A
Key 4.4

Coordinates
The Punch Line: If we have a basis of n vectors for any vector space, we can describe (and work with) any

vector from the space or equation in it as if it were in Rn all along!
Coordinate Vectors: If we have an ordered basis B =

{
~v1, ~v2, . . . , ~vn

}
for vector space V , then any vector v ∈ V has

a unique representation
~v = c1~v1 + c2~v2 + · · ·+ cn~vn,

where each ci is a real number. Then we can write the coordinate vector
[
~v
]
B =


c1
c2
...
cn

.
1 Find the representation of the given vector ~v with respect to the ordered basis B.

(a) B =


01
0

 ,
00
1

 ,
10
0


, ~v =

80
5


(b) B =

{
1, t, t2, t3

}
, ~v = t3 − 2t2 + t

(c) B =
{
1, (t − 1), (t − 1)2, (t − 1)3

}
, ~v = t3 − 2t2 + t

(d) B =


 1
−2
1

 ,
 1

0
−1


, ~v =

 1
1
−2


(e) B =

{[
1 0
0 1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 1
−1 0

]}
,

~v =
[

2 1
−1 0

]

(a) Here we have the second original component first, followed by the third original component, followed by

the first original. Thus,

80
5

 =

05
8


B

.

(b) Here, we get the coordinate vector


1
−2
1
0


B

.

(c) We can rearrange our polynomial as t3 − 2t2 + t = (t − 1)2 + (t − 1)3, so its coordinates in this basis are


1
1
0
0


B

.

(d) We can see that to match the middle component, we need c1 = −1
2 . This leaves

 3/2
0
−3/2

, so c2 = 3
2 and

 1
1
−2

 =[
−1/2
3/2

]
B

. This raises the important point that the number of entries in a coordinate vector depends on the length

of the basis it relates to, not the original vector space!
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Change of Coordinates in Rn: If we have a basis B =
{
~v1, ~v2, . . . , ~vn

}
for Rn, we can recover the standard rep-

resentation by using the matrix P whose columns are the (ordered) basis elements represented in the standard
basis:

P =
[
~v1 ~v2 · · · ~vn

]
.

The matrix P −1 takes vectors in the standard encoding and represents them with respect to B. Thus, if C is
another basis for the same space and Q is the matrix bringing representations with respect to C to the standard
basis, then Q−1P is a matrix which takes a vector encoded with respect to B and returns its encoding with respect
to C. That is, [

~v
]
C = Q−1P

[
~v
]
B .

2 Compute the change of basis matrices for the following bases (into and from the standard basis).

(a)


00
1

 ,
01
0

 ,
10
0


 (b)


10
0

 ,
11
0

 ,
11
1


 (c)

{[
1
1

]
,

[
1
−1

]}
(d)

{[
2
5

]
,

[
1
3

]}

(a) We have P =

0 0 1
0 1 0
1 0 0

, and P −1 = P (which we can see as P just transposes the first and third components).

(b) We have P =

1 1 1
0 1 1
0 0 1

, and P −1 =

1 −1 −1
0 1 −1
0 0 1

 (check this!).

(c) We have P =
[
1 1
1 −1

]
and P −1 = 1

2

[
1 1
1 −1

]
.

(d) We have P =
[
2 1
5 3

]
and P −1 =

[
3 −1
−5 2

]
.
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3 Compute the change of basis matrices between the two bases:

(a) B =


00
1

 ,
01
0

 ,
10
0


, C =


10
0

 ,
11
0

 ,
11
1


 (b) B =

{[
1
1

]
,

[
1
−1

]}
, C =

{[
2
5

]
,

[
1
3

]}

(a) The transition from encoding in B to C is given by

1 −1 −1
0 1 −1
0 0 1


0 0 1
0 1 0
1 0 0

 =

−1 −1 1
−1 1 0
1 0 0

. Its inverse is1 0 0
1 1 0
1 1 1

.
(b) The transition from B to C is given by

[
3 −1
−5 2

][
1 1
1 −1

]
=

[
2 4
−3 −7

]
. Its inverse is 1

2

[
1 1
1 −1

][
2 1
5 3

]
=

1
2

[
7 4
−3 −2

]
.
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