Coordinates

The Punch Line: If we have a basis of *n* vectors for any vector space, we can describe (and work with) any vector from the space or equation in it as if it were in \mathbb{R}^n all along!

Coordinate Vectors: If we have an *ordered* basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for vector space V, then any vector $v \in V$ has a unique representation

$$\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n,$$

where each c_i is a real number. Then we can write the *coordinate vector* $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} \vec{c}_1 \\ \vec{c}_2 \\ \vdots \end{bmatrix}$.

Find the representation of the given vector \vec{v} with respect to the ordered basis \mathcal{B} .

(a)
$$\mathcal{B} = \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}, \vec{v} = \begin{bmatrix} 8\\0\\5 \end{bmatrix}$$

(d)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}, \vec{v} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$

(b)
$$\mathcal{B} = \{1, t, t^2, t^3\}, \vec{v} = t^3 - 2t^2 +$$

(e)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\},$$
$$\vec{v} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$

(b)
$$\mathcal{B} = \{1, t, t^2, t^3\}, \vec{v} = t^3 - 2t^2 + t$$

(c) $\mathcal{B} = \{1, (t-1), (t-1)^2, (t-1)^3\}, \vec{v} = t^3 - 2t^2 + t$

Change of Coordinates in \mathbb{R}^n : If we have a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n , we can recover the standard representation by using the matrix P whose columns are the (ordered) basis elements represented in the standard basis:

$$P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix}.$$

The matrix P^{-1} takes vectors in the standard encoding and represents them with respect to \mathcal{B} . Thus, if \mathcal{C} is another basis for the same space and Q is the matrix bringing representations with respect to \mathcal{C} to the standard basis, then $Q^{-1}P$ is a matrix which takes a vector encoded with respect to \mathcal{B} and returns its encoding with respect to \mathcal{C} . That is,

$$[\vec{v}]_{\mathcal{C}} = Q^{-1} P [\vec{v}]_{\mathcal{B}}.$$

- 2 Compute the change of basis matrices for the following bases (into and from the standard basis).
 - $(a) \ \left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$
- $(b) \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$
- $(c) \ \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$
- (d) $\left\{ \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$

3 Compute the change of basis matrices between the two bases:

(a)
$$\mathcal{B} = \left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}, \mathcal{C} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

$$(b) \ \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}, \ \mathcal{C} = \left\{ \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$$