Inner Products, Length, and Orthogonality

The Punch Line: We can compute a real number relating two vectors-or a vector to itself-that gives information on both length and angle.

Warm-Up What are the lengths of these vectors, as found geometrically (using things like the Pythagorean Theorem)?
(a) $\left[\begin{array}{l}3 \\ 0\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(e) $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
(b) $\left[\begin{array}{c}0 \\ -2\end{array}\right]$
(d) $\left[\begin{array}{l}3 \\ 4\end{array}\right]$
(f) $\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$

The Inner Product: If we think about a vector $\vec{v} \in \mathbb{R}^{n}$ as a $n \times 1$ matrix (a single column), then \vec{v}^{T} is a $1 \times n$ matrix (a single row, sometimes called a row vector). Then we can multiply \vec{v}^{T} against a vector (on the left) to get a 1×1 matrix, which we can consider a scalar. This is the idea behind the inner product in \mathbb{R}^{n}, also called the dot product: we take two vectors, \vec{u} and \vec{v}, and define their inner product as $\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}$. This corresponds to multiplying together corresponding entries in the vectors, then adding all of the results to get a single number.

1 Find the inner product of the two given vectors:
(a) $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 3\end{array}\right]$
(c) $\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}3 \\ 2 \\ -1 \\ 0\end{array}\right]$
(e) $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}x \\ y\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(f) $\left[\begin{array}{l}x \\ y\end{array}\right]$ and $\left[\begin{array}{c}-y \\ x\end{array}\right]$

Length and Orthogonality: We observe that in \mathbb{R}^{2}, the quantity $\sqrt{\vec{v}} \cdot \vec{v}$ is the length of \vec{v} as given by the Pythagorean Theorem. This motivates us to define the length of a vector in any \mathbb{R}^{n} as $\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}$ (encouraged that it also agrees with our idea of length in \mathbb{R}^{1} and \mathbb{R}^{3}). Then the distance between \vec{u} and \vec{v} is $\|\vec{u}-\vec{v}\|$, the length of the vector between them.

We also observe that in \mathbb{R}^{2}, if \vec{u} and \vec{v} are perpendicular then $\vec{u} \cdot \vec{v}=0$, and vice versa. To generalize this, we say \vec{u} and \vec{v} are orthogonal if $\vec{u} \cdot \vec{v}=0$ (and indeed, this matches with perpendicularity in three dimensions as well).

2 What are the lengths of these vectors (computed with inner products)?
(a) $\left[\begin{array}{l}3 \\ 4\end{array}\right]$
(b) $\left[\begin{array}{c}2 \\ -3 \\ 1 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(d) The vector of all 1 s
in \mathbb{R}^{n} (this is something of a challenge problem)

3 What is the distance between these two vectors? Are they orthogonal?
(a) $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$
(c) $\left[\begin{array}{l}2 \\ 5\end{array}\right]$ and $\left[\begin{array}{l}-2 \\ -5\end{array}\right]$
(d) Two (different) standard basis vectors in \mathbb{R}^{n}

[^0]
[^0]: Under the Hood: This idea of orthogonality can be used to find the collection of all vectors which are orthogonal to some given \vec{u}. These are the solutions to the equation $\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}=0$. This is just finding the nullspace of the matrix \vec{u}^{T}, but now it has a nice geometric interpretation. The solution set is a subspace, known as the orthogonal complement of \vec{u}.

