> 5c Consider the orthogonal complement to a vector subspace W in \mathbb{R}^{3}. Find the orthogonal complement W^{\perp} when $W=\{\vec{v} \mid \vec{w} \cdot \vec{v}=0$, with $\vec{w}=(5,3,0)\}$.

We're after the set W^{\perp}, which is in general $\{\vec{u} \mid \vec{u} \cdot \vec{v}=0$, with $\vec{v} \in W\}$. That is, all vectors \vec{u} which are orthogonal to every vector \vec{v} in W.

Method 1: The subspace W is defined in a very similar way, as all vectors which are orthogonal to $\vec{w}=(5,3,0)$. So, we're after everything orthogonal to everything orthogonal to \vec{w}. This means that \vec{w} is certainly in W^{\perp} : it's orthogonal to everything orthogonal to it! In fact, $c \vec{w}$ for any $c \in \mathbb{R}$ is in W^{\perp}, geometrically because orthogonality is a statement about angles, and scaling length doesn't change angles, and algebraically because

$$
\vec{v} \cdot(c \vec{w})=\vec{v}^{T}(c \vec{w})=c \vec{v}^{T} \vec{w}=c(\vec{v} \cdot \vec{w})=0
$$

(because \vec{v}^{T} is just a matrix, and we're assuming $\vec{v} \in W$, so it's orthogonal to \vec{w}). So, span $\{\vec{w}\}$ is in W^{\perp}, and we just have to check if anything else is.

If W^{\perp} had vectors in it that weren't in $\operatorname{span}(\vec{w})$, it would be at least two-dimensional, so we would be able to choose some orthogonal basis for W^{\perp} involving \vec{w} and some other vector \vec{w}^{\prime}. But then $\vec{w}^{\prime} \cdot \vec{w}=0$ (because it's an orthogonal basis) so $\vec{w}^{\prime} \in W$, so \vec{w}^{\prime} couldn't have been in W^{\perp} after all! So, W^{\perp} has to be just span $\{\vec{w}\}$.

Method 2: We can figure out the general form for vectors in W : if we start by writing $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$, we know we have to satisfy the equation $\vec{v} \cdot \vec{w}=0$, so $\left(v_{1}, v_{2}, v_{3}\right) \cdot(5,3,0)=5 v_{1}+3 v_{2}=0$, so $v_{1}=-\frac{3}{5} \vec{v}_{2}$. We don't have any conditions on v_{3}, so we can see that any vector $\vec{v} \in W$ has the form $\left(-\frac{3}{5} v_{2}, v_{2}, v_{3}\right)$ for some pair of real numbers v_{2} and v_{3}. This means in turn that $W=\operatorname{span}\{(-3,5,0),(0,0,1)\}$ (setting $v_{2}=5$ and $v_{3}=0$, and $v_{2}=0$ and $v_{3}=1$, respectively).

So, to be in W^{\perp}, a vector \vec{u} must satisfy $(-3,5,0) \cdot \vec{u}=0$ and $(0,0,1) \cdot \vec{u}=0$. Putting these two linear equations into one matrix equation gives

$$
\left[\begin{array}{ccc}
-3 & 5 & 0 \\
0 & 0 & 1
\end{array}\right] \vec{u}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

So, W^{\perp} is precisely the null space of the matrix above, which one can work out to be $\operatorname{span}\{(5,3,0)\}=\operatorname{span}\{\vec{w}\}$.

