5c Consider the orthogonal complement to a vector subspace *W* in \mathbb{R}^3 . Find the orthogonal complement W^{\perp} when $W = \{\vec{v} \mid \vec{w} \cdot \vec{v} = 0, \text{ with } \vec{w} = (5, 3, 0)\}.$

We're after the set W^{\perp} , which is in general $\{\vec{u} \mid \vec{u} \cdot \vec{v} = 0, \text{ with } \vec{v} \in W\}$. That is, all vectors \vec{u} which are orthogonal to *every* vector \vec{v} in W.

Method 1: The subspace *W* is defined in a very similar way, as all vectors which are orthogonal to $\vec{w} = (5, 3, 0)$. So, we're after everything orthogonal to everything orthogonal to \vec{w} . This means that \vec{w} is certainly in W^{\perp} : it's orthogonal to everything orthogonal to it! In fact, $c\vec{w}$ for any $c \in \mathbb{R}$ is in W^{\perp} , geometrically because orthogonality is a statement about angles, and scaling length doesn't change angles, and algebraically because

$$\vec{v} \cdot (c\vec{w}) = \vec{v}^T (c\vec{w}) = c\vec{v}^T \vec{w} = c(\vec{v} \cdot \vec{w}) = 0$$

(because \vec{v}^T is just a matrix, and we're assuming $\vec{v} \in W$, so it's orthogonal to \vec{w}). So, span $\{\vec{w}\}$ is in W^{\perp} , and we just have to check if anything else is.

If W^{\perp} had vectors in it that weren't in span(\vec{w}), it would be at least two-dimensional, so we would be able to choose some orthogonal basis for W^{\perp} involving \vec{w} and some other vector \vec{w}' . But then $\vec{w}' \cdot \vec{w} = 0$ (because it's an orthogonal basis) so $\vec{w}' \in W$, so \vec{w}' couldn't have been in W^{\perp} after all! So, W^{\perp} has to be just span{ \vec{w} }.

Method 2: We can figure out the general form for vectors in *W*: if we start by writing $\vec{v} = (v_1, v_2, v_3)$, we know we have to satisfy the equation $\vec{v} \cdot \vec{w} = 0$, so $(v_1, v_2, v_3) \cdot (5, 3, 0) = 5v_1 + 3v_2 = 0$, so $v_1 = -\frac{3}{5}\vec{v}_2$. We don't have any conditions on v_3 , so we can see that any vector $\vec{v} \in W$ has the form $(-\frac{3}{5}v_2, v_2, v_3)$ for some pair of real numbers v_2 and v_3 . This means in turn that $W = \text{span}\{(-3, 5, 0), (0, 0, 1)\}$ (setting $v_2 = 5$ and $v_3 = 0$, and $v_2 = 0$ and $v_3 = 1$, respectively).

So, to be in W^{\perp} , a vector \vec{u} must satisfy $(-3, 5, 0) \cdot \vec{u} = 0$ and $(0, 0, 1) \cdot \vec{u} = 0$. Putting these two linear equations into one matrix equation gives

$$\begin{bmatrix} -3 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \vec{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

So, W^{\perp} is precisely the null space of the matrix above, which one can work out to be span $\{(5,3,0)\} = \text{span}\{\vec{w}\}$.