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Abstract. We extend the results of [CGLS22] to higher weight modular forms
and prove a rank 0 Tamagawa number formula (also known as the Bloch–Kato
conjecture) for modular forms at good Eisenstein primes. Under standard
hypotheses (i.e. the injectivity of the p-adic Abel-Jabobi map and the non-
degeneracy of the Gillet–Soulé height pairing), we also discuss some partial
results towards a rank 1 result. A conditional higher weight p-converse theorem
to Gross–Zagier–Zhang–Kolyvagin–Nekovář is also obtained as a consequence
of the anticyclotomic Iwasawa Main Conjectures.
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Introduction

0.1. Background. In [CGLS22], Castella, Grossi, Lee and Skinner proved an
anticyclotomic Iwasawa main conjecture for elliptic curves at Eisenstein primes over
an imaginary quadratic field under certain hypothesis. Together with a rank 0 BSD
formula obtained by Greenberg and Vatsal in [GV00], they proved a rank 1 BSD
formula for elliptic curves over Q in the residually reducible setting. Most of their
results have since been generalized to higher weight modular forms in [KY24a],
and several hypotheses have been removed in op. cit. (e.g. the condition that
φ|Gp , ψ|Gp � 1, ω where φ,ψ are the characters appearing in the semisimplification
of Erps, and ω is the mod-p cyclotomic character and Gp denotes the decomposition
group at p) as well as in [CGS23] (e.g. assumptions on the characters coming
from [GV00]).

In [KY24a], most of the results in [CGLS22] have been extended to higher weight
modular forms, but a BSD formula is only obtained for elliptic curves. In this
paper, we will further extend this application to modular forms of arbitrary weight
and prove the Tamagawa number conjecture in rank 0 as well as a higher weight
p-converse theorem. Under standard hypotheses, we will also provide necessary
ingredients towards a rank 1 Tamagawa Number formula. The only incompleteness
is due to the lack of a Gross–Zagier–Zhang type formula for Generalized Heegner
cycles introduced by Bertolini–Darmon–Prasana in [BDP13], which we hope to
examine in future work.

0.2. The main results. Let f P Snew2r pΓ0pNqq be a newform of weight 2r ¥ 2 and
level N with trivial Nebentypus. Let Qpfq be the coefficient field of f , i.e., the finite
extension of Q generated by the Fourier coefficients tanpfqun¥1 of f , with ring of
integers Zpfq. Fix an odd prime p ∤ N such that ap is a p-adic unit. Equivalently,
this means p is a prime of good ordinary reduction for f . Let F be a finite extension
of the completion of Qpfq at a chosen place p above p with ring of integers O, and
denote by

ρf p1� rq : GalpQ{Qq Ñ GL2pF q
the self-dual Tate twist of the p-adic Galois representation ρf attached to f (dual
to Deligne’s construction). We denote from now by Vf the self-dual representation
attached to f as above. When necessary, we use ρf instead of Vf to emphasize that
ρf is before self-dual twist. Let F be the residual field of F . We assume p is an
Eisenstein prime for f , meaning that the residual representation ρf is reducible.
Then the self-dual twist gives rise to a decomposition

ρss
f p1� rq � Fppεωr�1qωq ` Fppεωr�1q�1q.

We denote characters occurring in ρss
f p1� rq by φ and ψ, so φψ � ω.
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Let us briefly explain the ideas that go into the proof of our main results. Recall
that we only consider Eisenstein primes for f , meaning that the semisimplification
of the residual representation

ρssf � Fpφq ` Fpψq
is reducible. Equivalently, there is an extension
(0.1) 0 Ñ Fpφq Ñ ρf Ñ Fpψq Ñ 0.
By abuse of notation, we assume ρf is self-dual so that φψ � ω. However, to make
sense of the residual representation, one needs to make a choice of a Galois stable
lattice Tf in Vf . Unlike the residually irreducible case, such choice is not unique
up to homothety. Fortunately, both the Iwasawa main conjecture and the BSD
conjecture (see [KY24a]) are invariant under isogeny, so we are free to choose any
lattice (by Ribet’s lemma, this amounts to a choice of the ordering of the characters
appearing in (0.1)). Actually, a choice of the lattice plays a crucial role in the proof
of their main results. For our application, it is sufficient to choose the ‘canonical’
lattice (see section 2.6.1).

A key input in this paper is an anticyclotomic Iwasawa main conjecture for
modular forms proved in [KY24a]. Let K be an imaginary quadratic field and
ΓK � GalpK8{Kq be the Galois group of the anticyclotomic Zp-extension of K.
Let ΛK � OJΓKK be the Iwasawa algebra and let Λnr

K � ΛKb̂Zp
Znr
p , for Znr

p the
completion of the ring of integers of the maximal unramified extension of Qp. The
(Greenberg’s) Iwasawa Main Conjecture we need takes on the following form:

Conjecture A. Let f P Snew2r pΓ0pNqq be a newform of weight 2r ¥ 2 and p ∤ 2N
be an Eisenstein prime of good ordinary reduction for f . If K is an imaginary
quadratic field satisfying the Heegner hypothesis, then Xf is ΛK-cotorsion, and

CharpXf qΛnr
K � pLBDP

f q
as ideals in Λnr

K

Here the left hand side is the characteristic ideal of a certain Selmer group Xf
for f and the right hand side is an associated p-adic L-function which lives in Λnr

K .
The Heegner hypothesis states that every prime dividing N is split in K.

Under Assumption 1.2.1, Conjecture A is now a theorem in [KY24a] if r is odd.
In fact, it is further shown that the above conjecture is equivalent to a Heegner
Point Main Conjecture.

Conjecture B. Let f P Snew2r pΓ0pNqq be a newform of weight 2r ¥ 2 and p ∤ 2N be
an Eisenstein prime of good ordinary reduction for f , and let K be an imaginary
quadratic field satisfying the Heegner hypothesis. Then both S and X have ΛK-rank
one, and

CharΛK
pXtorsq � CharΛK

pS{ΛK � κHeegq2,
where Xtors denote the Λ-torsion submodule of X.

Here S � H1
FΛK

pK,Tq and X � H1
FΛK

pK,Mf q_ are (Pontryagin duals of) certain
ΛK-adic Selmer groups introduced in [CGLS22, section 3], and κHeeg is a ΛK-adic
Heegner cycle conjectured to be non-torsion. Again under Assumption 1.2.1, Theo-
rem B is now a theorem whenever r is odd.

A standard consequence of a Heegner Point Main Conjecture is a p-converse
theorem of Gross–Zagier–Kolyvagin (see for example [KY24b]). For higher weight
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modular forms, the Gross–Zagier formula is extended by Zhang and the ‘forward’
theorem of Kolyvagin is extended by Nekovář. It should be noted that the classical
Heegner cycles in Zhang’s formula as well as in Nekovář’s work are different from the
generalized Heegner cycles appearing in the above Heegner Point Main Conjecture.
Their difference is understood well enough to yield the p-converse theorem, yet a
complete proof of the rank 1 Tamagawa Number formula remains mysterious.

Let Lpf, sq be the L-function of the Galois representation ρf . The analytic rank
of f is it’s order of vanishing at s � r (which agrees with the order of vanishing of
the L-function LpVf , sq at s � 1 after self-dual twist). Let Af be defined by the
following short exact sequence

0 Ñ Tf Ñ Vf Ñ Af Ñ 0,

and let H1
BKpK,Af q be the Bloch–Kato Selmer group for Af over K. Let

AJfK : CHr{2pẼ2r�2pNq{Kq0 bO Ñ H1
ctspK,Af q

be the p-adic Abel–Jacobi map attached to the Kuga–Sato variety Ẽ2r�2pNq of level
N and weight 2r (see section 2 for more discussion about this map). Then by work
of Nekovář (see for example [Nek92, Proposition 11.2]), there is an exact sequence

(0.2) 0 Ñ im pAJfKq bQp{Zp Ñ H1
BKpK,Af q ÑXNekpf{Kq Ñ 0

which defines XNekpf{Kq, necessarily a p-primary group. The algebraic rank of
f is the Zp-corank of the first group. We mention that XNekpf{Kq is gener-
ally different from the Tate–Shafarevich group defined a là Bloch–Kato as the
quotient XBKpf{Kq :� H1

BKpK,Af q{H1
BKpK,Af qdiv (see [Mas17, Remark 8.2]).

However note that im pAJfKq b Qp{Zp maps injectively into H1
BKpK,Af qdiv, and

hence there is a surjection XNekpf{Kq ↠ XBKpf{Kq, the latter always being
finite whenever H1

BKpK,Af q has finite O-corank. When the p8-part of the classical
Tate–Shafarevich group XpAf {Kqrp8s �XpAf {Kqrp8s bZpfq O is finite, there is
an equality XBKpf{Kq �XpAf {Kqrp8s.

Zhang’s Gross–Zagier formula [Zha97] and Nekovář’s theorem [Nek92] generalize
Gross–Zagier–Kolyvagin theorem to modular forms. Namely, whenever the analytic
rank is less than 1, it’s equal to the algebraic rank. The higher weight p-converse
theorem is the first main result of this paper. See Theorem 4.4.3.

Theorem C. Let f P Snew2r pΓ0pNqq be a newform of weight 2r ¥ 2 where r is odd
and p ∤ 2N be an Eisenstein prime of good ordinary reduction for f . Assume the
Gillet–Soulé pairing is non-degenerate and all Abel–Jacobi maps are injective. Let
t P t0, 1u. Then

corankZp
pH1

BKpQ, Af qq � tñ ords�rLpf{Q, sq � t,

and so dimF pim pAJfQq bQq � t and #XNekpf{Qqrp8s   8.

Another consequence of the anticyclotomic Iwasawa Main Conjectures over K,
by the descent arguments of [CGS23], is a cyclotomic Iwasawa Main Conjecture
over Q. Let Xpfq :� H1

GrpQ,M 1
f q_ be the Pontryagin dual of the p-primary Selmer

group for f over Q and let LMSD
f be the Mazur–Swinnerton-Dyer p-adic L-function

for f (seesection 1.4 for definitions). Here ΛQ :� ZpJGalpQ8{QqK is the cyclotomic
Iwasawa algebra over Q.
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Conjecture D. Let f P Snew2r pΓ0pNqq be a newform. Let p ∤ N be an Eisenstein
prime for f , i.e., ρf is reducible. Then

CharΛQpH1
GrpQ,M 1

f q_q � pLMSD
f q

This conjecture was first proved in [GV00] for elliptic curves (though their
arguments should easily extend to treat arbitrary modular forms) under technical
assumptions that force the Iwasawa µ-invariants of both sides to vanish. Later it
was extended in [CGS23] based on [CGLS22] to allow positive µ-invariants using
new ideas, with weaker technical conditions, again for elliptic curves. It is now an
unconditional theorem for elliptic curves by the modification of [CGLS22] in [KY24a].
A generalization of the results in [CGS23] to higher weight modular forms would
yield an unconditional proof of this conjecture. However, currently only a direct
generalization of [GV00] is available. If one in addition assumes that the modular
form has weight 2r ¤ p � 1, the above conjecture is proved in [Hir18] under the
assumptions in [GV00]. See Theorem 1.4.2.

If we assume that φ|Gp , ψ|Gp � 1, ω, then we can apply the control theorems for
higher weight modular forms in [LV21]. Note that a consequence of this additional
hypothesis is that H0pQ, Af q � 0. Similar to (0.2), there is a short exact sequence

(0.3) 0 Ñ im pAJfQq bQp{Zp Ñ H1
BKpQ, Af q ÑXNekpf{Qq Ñ 0

that defines XNekpf{Qq. As a corollary of the cyclotomic Iwasawa Main Conjecture
and the cyclotomic control theorem, we obtain the p-part Tamagawa Number formula
in the rank 0 case. See Theorem 4.3.1.

Theorem E (p-part Tamagawa Number Conjecture in rank 0). Let f P Snew2r pΓ0pNqq
be a newform of weight 2r ¤ p� 1 where p ∤ 2N is an Eisenstein prime for f , i.e.,
ρf is reducible. Assume that the sub-representation Fpφq of ρf is either ramified
at p and even, or unramified and odd when restricted to the decomposition group.
Assume Lpf, rq � 0. We have

ordppLpf, rqΩf
q � ordpp#XNekpf{Qq#TampAf {Qqq

Here Ωf is the period attached to f as in eq. (1.1).

We also prove an anticyclotomic control theorem that is good for a rank 1
Tamagawa Number formula. However, due to the lack of a Gross–Zagier–Zhang
type formula and insufficient understanding of the relation between the generalized
Heegner cycles and the L-function, we will not try to prove the rank 1 formula here.

Under the hypotheses in Theorem 3.3.1, one has the following.

Theorem F (Anticyclotomic Control Theorem). Let fΣ
ac be a generator of the

characteristic ideal CharΛK
pXΣ

acpMf qq of the torsion ΛK-module XΣ
acpMf q, then

#O{fΣ
acp0q �

#XBKpf{Kq � CΣpAf q
p#H0pK,Af qq2

p#δvq2,

where CΣpAf q and δv are in Theorem 3.3.1 accounting for Tamagawa numbers, local
and global index depending on a choice of a Heegner cycle.

Finally, we also do some computations towards the verification of a rank 1
Tamagawa Number formula in section 4.5.



6 MULUN YIN

0.3. Methods of proof and outline of the paper. As this work is a direct
generalization of the results in [CGLS22], the main ideas of proofs are similar.
However, as the situations are more mysterious for higher weight modular forms
than for elliptic curves and less is known, we often need to first establish analogues of
existing results, or do some extra verification and comparison that are unnecessary
in weight 2.

In section 1, we review some background knowledge from Iwasawa theory. In par-
ticular, we discuss the anticyclotomic Iwasawa Main Conjectures proved in [KY24a]
and a cyclotomic Iwasawa Main Conjecture in the style of [GV00] for higher weight
modular forms. These will be the foundation for our proofs of the Tagamawa
Number formulas. We also discuss how to use the Main Conjectures before self-dual
twist to study the Tamagawa Number Conjectures after self-dual twist.

In section 2, we review the constructions of Heegner cycles and p-adic Abel–
Jacobi maps in two different settings. The first setting is based on Kuga–Sato
varieties over the modular curve X1pNq, where we have the theory of Bertolini–
Darmon–Prasana that relates the Abel–Jacobi image of Heegner cycles over Γ1pNq
to their p-adic L-functions. This provides a p-adic Gross–Zagier formula we will
need to study a rank 1 Tamagawa Number formula. On the other hand, there is
a second setting where everything is defined over the congruence subgroup ΓpNq.
The combined work of Zhang [Zha97] and Nekovář [Nek92] provides a generalization
of the classical Gross–Zagier–Kolyvagin’s theorem to higher weight modular forms,
where the Heegner points for elliptic curves are replaced by the Heegner cycles over
ΓpNq, while no analogue is known for Γ1pNq. As far as the Tamagawa Number
conjecture is concerned, it should not matter which kind of Heegner cycles we choose,
as they only show up in intermidiate steps. However, due to the above asymmetric
situation, we do not have enough tools to unite them. Nevertheless, we mention a
few comparison results of Thackery [Tha22] that relate the indices of the Heegner
cycles in the Abel–Jacobi images that is good enough for a p-converse theorem.

In section 3, we discuss three control theorems with exact formulae for modular
forms, one cyclotomic and two anticyclotomic (one of Greenberg type and one of
Jetchev–Skinner–Wan type, see Theorem F). The cyclotomic control theorem over
Q is good for the rank 0 Tamagawa Number Conjecture and is the main result
of [LV21], while the anticyclotomic control theorem over K of Jetchev–Skinner–Wan
type is needed for the rank 1 result and is discussed in [Tha22] in the irreducible
setting. We explain how to adapt these results to the residually reducible case.
On te other hand, the control theorem of Greenberg type will be needed for the
p-converse theorem. Since we do not have access to a general cyclotomic main
conjecture, it is sufficient to consider the cyclotomic control theorem where there is
no global torsion, i.e. when H0pQp, Af q � 0. However, the anticyclotomic control
theorems do allow non-trivial global torsion.

In section 4, we first prove the rank 0 Tagamawa Number formula (Theorem E)
by combining the Main Conjectures from section 1 and the control theorem from sec-
tion 3. This result is also necessary for a rank 1 formula. Then we prove a p-converse
theorem (Theorem C) to the theorem of Gross–Zagier–Zhang–Kolyvagin–Nekovář.
In doing so, we need to choose some auxiliary imaginary quadratic fields K where
the Iwasawa Main Conjectures hold, and we also need to compare different Heegner
cycles to related the global L-functions to the p-adic ones. Finally, we compute some
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specific p-indices appearing in the anticyclotomic control theorem using Fontaine–
Laffaille theory, and study the compatibility of all computational results towards
the rank 1 Tamagawa Number formula.

0.4. Relation to previous works. Our main results are based on the Iwasawa
Main Conjectures studie by several authors. The cyclotomic Iwasawa Main Conjec-
ture for elliptic curves in the good Eisenstein case was first proved in [GV00] and
generalized for some higher weight modular forms in [Hir18]. The anticyclotomic
Main Conjectures for elliptic curves in the good Eisenstein case was first proved
in [CGLS22] and generalized for some higher weight modular forms in [KY24a].

Prior to this work, control theorems for modular forms have been studied in [LV21]
(cyclotomic) and [JSW17] (anticyclotomic). We explain how to adapt them in the
Eisenstein case.

A p-converse theorems for modular forms in the irreducible setting was given
in [LV23]. Their approach is based on Kolyvagin’s Conjecture and is different from
ours.

Tamagawa Number conjecture formula in rank 0 and 1 for motives of modular
forms are discussed in [LV23]. A higher weight BSD formula in rank 1 is also
obtained in [Tha22]. All these results are in the residually irreducible setting.

0.5. Notations. For any subextension L{Q of Q̄{Q, we let GL � GalpQ̄{Lq denote
its absolute Galois group. For a cohomology group Hip�,�q, we write HipL,�q in
place of HipGL,�q.
0.6. Future Work. A generalization of [CGS23] to higher weight modular forms
would hopefully remove the technical assumptions in [GV00]. In particular, elliptic
curves with non-trivial torsion groups will be covered and therefore we hope to
extend the cyclotomic control theorem from [LV21] to allow torsion as well.

On the other hand, since a rank 1 result on the p-part Tamagawa Number
Conjecture is desired, we hope to examine a Gross–Zagier type formula for Heegner
cycles defined over Γ1pNq.
0.7. Acknowledgment. This is part of the author’s forthcoming Ph. D. thesis.
We thank his advisor Francesc Castella for his guidance.

1. Iwasawa theory

To state the main results in [KY24a] that yield a proof of Conjecture A in
the introduction, we first recall the algebraic side and the analytic side of the
anticyclotomic Iwasawa theory.

Let K � Q be an auxiliary imaginary quadratic field in which p � vv splits, with
v the prime of K above p induced by ιp. We also fix an embedding ι8 : Q ãÑ C.

Let GK � GalpQ{Kq � GQ :� GalpQ{Qq, and for each place w of K let
Iw � Gw � GK be the corresponding inertia and decomposition groups. Let
Frobw P Gw{Iw be the arithmetic Frobenius. For the prime v | p, we assume Gv is
chosen so that it is identified with GalpQp{Qpq via ιp.

Recall that F {Qp is a finite extension of Qp containing the Fourier coefficients
of f . Let O denote its ring of integers and F be its residue field. Denote by p a
prime ideal of O lying above p. Let Γ :� GalpK8{Kq be the Galois group of the
anticyclotomic Zp-extension K8 of K, and let ΛK :� OJΓK be the anticyclotomic



8 MULUN YIN

Iwasawa algebra. We shall often identify ΛK with the power series ring OJT K by
setting T � γ � 1 for a fixed topological generator γ P Γ.

Throughout, we assume the Heegner hypothesis

(Heeg) every prime l dividing N splits in K.

1.1. The algebraic side. In this section, we define the Selmer groups and discuss
some of its important properties. The goal is to describe the Iwasawa theoretic
results on the algebraic side which will be compared to those on the analytic side in
the next section.

Let Σ � tv, v̄,8u be a finite set of places of K. We define the Selmer group with
unramified local conditions for f as

H1
Fur

pK, Mf q � ker
�

H1pKΣ{K, Mf q Ñ H1pIv, Mf qGv{Iv �
¹

w|l�p,lPΣ

H1pIw, Mf qGw{Iw




where KΣ is the maximal extension of K unramified outside Σ and Mf � Tf bΛ_
K

For a set S � Σztv, v,8u, we define the S-imprimitive Selmer group for f as

H1
FS

ur
pK, Mf q � ker

�
H1pKΣ{K, Mf q Ñ H1pIv, Mf qGv{Iv




It is proved in [KY24a] that these Selmer groups are ΛK-cotorsion and the global-
to-local maps defining the Selmer groups are surjective. Let Xf and XSf denote the
Pontryagin dual of the primitive and imprimitive Selmer groups for f respectively.

Replacing Mf with Mf rps in the above definitions, we also get the (primitive and
imprimitive) residual Selmer groups for f .

For a character ϑ : GK Ñ F� whose conductor is only divisible by primes split
in K, define Mϑ � Opϑq bO Λ_

K . Replacing Mf with Mϑ in the above definitions,
we also contain the Selmer groups for ϑ.

The imprimitive residual Selmer groups allow us to compare f with the characters
φ,ψ appearing in the semisimplification of ρf . Using the known results about the
characters, it is shown in [CGLS22] that the Iwasawa µ-invariants of the Selmer
groups are vanishing and the λ-invariant of f is related to those of the characters.
For example, in the setting of loc. cit. (i.e. when f corresponds to an elliptic curve,
with some technical conditions), one can show that for ? � f, φ, ψ,

λpX?q � dimFp
H1

FS
ur
pK,M?rpsq

and there is a short exact sequence

0 Ñ H1
FS

ur
pK,Mφrpsq Ñ H1

FS
ur
pK,Mf rpsq Ñ H1

FS
ur
pK,Mψrpsq Ñ 0,

so we have the following simple relation

λpXSf q � λpXSφq � λpXSψq.
In general cases, the above relation between the λ-invariants should be satisfied,
even if the above sequences may not be exact, except in one case when one of
the characters is the trivial character over GK . This exceptional case is studied
in [KY24a], and the difference is consistent with the Iwasawa main conjecture for
the trivial character which differs from others.

We record the following theorem from op. cit. which compares the algebraic
Iwasawa invariants of f to those of the characters.
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Theorem 1.1.1. Let φ,ψ be the characters appearing in the semisimplification
of ρf . If neither of them is the trivial character on GK , then the module Xf is
ΛK-torsion with µpXf q � 0 and

λpXf q � λpXφq � λpXψq �
¸
wPS

 
λpPwpφqq � λpPwpψqq � λpPwpfqq

(
.

When φ|GK
or ψ|GK

� 1, the same results hold except that the relation between
ΛK-invariants now becomes

λpXf q � 1 � λpXφq � λpXψq �
¸
wPS

 
λpPwpφqq � λpPwpψqq � λpPwpfqq

(
.

Proof. This is a combination of [KY24a, Section 1.5] and [CGLS22, Section 1.5].
We mention that in the second case, the result holds no matter whether Fp1q is a
subrepresentation or a quotient representation of ρf . □

1.2. the analytic side. In this section, we describe the BDP p-adic L-functions for
f and the Katz p-adic L-function for the characters obtained from [KY24a, section
2.1], and discuss their useful properties. The following hypotheses are in effect
throughout this section. They all come from [CGLS22].

Assumption 1.2.1. (i) p � vv̄ is split in K
(ii) The Heegner hypothesis
(iii) The discriminant DK of K is odd and DK � �3

1.2.1. The Bertolini–Darmon–Prasanna p-adic L-functions. The Heegner hypothesis
allows one to fix an integral ideal N � OK with

OK{N � Z{N.
Proposition 1.2.2 (p-adic interpolation property). There exists an element LBDP

f P
ΛurK characterized by the following interpolation property: If ξ̂ P Xp8 is the p-adic
avatar of a Hecke character ξ of infinity type pn,�nq with n ¥ 0 and p-power
conductor, then

LBDP
f pξ̂q � Ω4n

p

Ω4n
K

�4Γpn� k
2 qΓpn� k

2 � 1qξ�1pN�1q
p2πq2n�1p?DKq2n�1

�p1�appfqp�rξpppq�ξppp2qp�1q2�Lpf{K, ξ, 1q.

This BDP p-adic L-function can also be explicitly constructed using results
from [CH18]. See [CGLS22, Theorem 2.1.1] for more detail in the elliptic curve case.
It should be mentioned that in [KY24a, Theorem 2.1.1] they can pick c � c0 � 1
because it is sufficient for their application to a BSD conjecture for elliptic curves,
but we will assume that we are in a more general case where we can at most say
c � c0 is prime to p (see [BDP13, Assumption 5.12]). From [CH18, Theorem 3.8],
the above interpolation formula still holds (up to p-adic units) when pc0, pq � 1.

Note that the above interpolation property characterizes the BDP p-adic L-
function, but one cannot directly plug in the norm character Nr

K of infinity type
pr, rq because it’s outside the range of interpolation. The value at Nr can be
computed using the main theorem of [BDP13] (see Theorem 4.1.3), and since
Lppf,Nrq corresponds to the value Lpf{K,N�r, 0q � Lpf{K,1, rq � Lpf{K, rq, it
is the constant term LBDP

f p0q.



10 MULUN YIN

1.2.2. The Katz p-adic L-functions.

Proposition 1.2.3. There exists an element Lϑ P Λnr
K characterized by the following

interpolation property: For every character ξ of Γ crystalline at both v and v̄ and
corresponding to a Hecke character of K of infinity type pn,�nq with n P Z¡0 and
n � 0 (mod p� 1), we have

Lϑpξq �
Ω2n
p

Ω2n8
� 4Γpn� k

2 q �
p2πiqn� k

2

?
DK

n� k
2
� p1� ϑ�1ppqξ�1pvqq � p1� ϑppqξpv̄qp�1q

�
¹
ℓ|C
p1� ϑpℓqξpwqℓ�1q � LpϑKξN

k
2
K , 0q.

The fact that ρf is reducible is equivalent to the fact that f has (partial) Eisenstein
descent described in [Kri16, section 3.6], meaning there is a congruence

ϑjf � ϑjG pmod pq, j ¥ 1

where ϑ is the Atkin-Serre operator described in section 3.2 of op. cit. and G is
a certain Eisenstein series indexed by φ and ψ. By the arguments in [CGLS22,
Theorem 2.2.1], the above congruence in turn yields the congruence between the
p-adic L-functions

LBDP
f � pE ι

φ,ψq2 � pLφq2 pmod pΛurK q,
where E ι

φ,ψ corresponds to the Pwpϑq factors appearing in Theorem 1.1.1. One
knows that λpLφq � λpLψq from a functional equation and µpLφq � µpLψq � 0 by
a result of Hida ([Hid10]).

Further computation as in [CGLS22, Theorem 2.2.2] gives the following compari-
son of analytic λ-invariants.

Theorem 1.2.4. Assume that ρss
f � Fpφq`Fpψq as GQ-modules, with the characters

φ, ψ labeled so that p ∤ condpφq. Then µpLBDP
f q � 0 and

λpLBDP
f q � λpLφq � λpLψq �

¸
wPS

tλpPwpφqq � λpPwpψqq � λpPwpfqqu.

Combining Theorem 1.2.4 with Theorem 1.1.1, together with the Iwasawa Main
Conjectures for the characters proved by Rubin in [Rub91] (see [KY24a, Theorem
2.2.3] for a discussion about the trivial character, where we have λpX1q � λpL1q � 1
instead), one knows

λpXϑq � λpLϑq
and

µpXϑq � µpLϑq.
We arrive at the first ingredient into the proof of the Iwasawa Main Conjectures.

Theorem 1.2.5. Assume that ρssf � Fpψq ` Fpφq. Then µpLBDP
f q � µpXf q � 0

and
λpLBDP

f q � λpXf q.
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1.3. The anticyclotomic Iwasawa Main Conjectures. Recall that K is a field
satisfying the Heegner hypothesis (Heeg). Further assume that DK � �3 is odd.
The main results in this section come from [KY24a, Section 3], which are built upon
earlier works in [CGLS22] and [CGS23].

To prove the Iwasawa Main Conjecture (A) in the introduction, we first notice
that it is equivalent to a ‘Heegner Point Main Conjecture’ of Perrin-Riou type. In
fact, we have the following (the notations come from [CGLS22]):

Proposition 1.3.1. Assume that p � vv splits in K and H0pK, ρf q � 0. Then the
following are equivalent:
(IMC1) Both H1

FΛK
pK,Tq and X � H1

FΛK
pK,Mf q_ have Λ-rank one, and the

equality
CharΛK

pXtorsq � CharΛK
pH1

FΛK
pK,Tq{ΛK � κ8q2

holds in ΛK .
(IMC2) Both H1

Fnr
pK,Tq and Xf � H1

Fnr
pK,Mf q_ are ΛK-torsion, and the equality

CharΛK
pXf qΛnr

K � pLBDP
f q

holds in Λnr
K .

Moreover, the same result holds for opposite divisibilities.

Proof. This is [CGLS22, Proposition 4.2.1]. □

Using an analog of Howard’s Kolyvagin system argument in [How04], the above
divisibility in (IMC1) was mostly proved in [CGLS22] (where they need to invert
the height one prime pγ � 1q � ΛK in the sense that the divisibility only holds in
ΛKr1{pγ � 1qs. Their theorems only stated the results in ΛKr1{p, 1{pγ � 1qs since
inverting p was enough for their application, but the argument is already known to
work at p in [How04]) and later completed in [CGS23]. Further modification of the
Kolyvagin system argument for modular forms of higher weight k � 2r where odd r
is discussed in [KY24a].

From the above equivalence, the divisibility in (IMC2) is obtained. But from The-
orem 1.2.5, the divisibility in (IMC2) must in fact be an equality, and hence the
same result holds for (IMC1). Finally, as is discussed in [KY24a, Remark 3.0.9], the
assumption H0pK, ρf q can be removed by Ribet’s lemma, and we thus have

Theorem 1.3.2. Assume f has weight 2r with r odd. Assume that p � vv splits in
K. Then the following statements hold:
(IMC1) Both H1

FΛK
pK,Tq and X � H1

FΛK
pK,Mf q_ have Λ-rank one, and the

equality
CharΛK

pXtorsq � CharΛK
pH1

FΛK
pK,Tq{ΛK � κ8q2

holds in ΛK .
(IMC2) Both H1

Fnr
pK,Tq and Xf � H1

Fnr
pK,Mf q_ are ΛK-torsion, and the equality

CharΛK
pXf qΛnr

K � pLBDP
f q

holds in Λnr
K .

Some consequences of the anticyclotomic Iwasawa Main Conjectures include the
p-converse theorem ((IMC1)) and some partial results towards p-part BSD formulae
((IMC2)). In fact, (IMC2) can be used to show that a rank 0 p-part BSD formula
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implies a rank 1 formula (more precisely, we need a rank 0 formula for fK , the twist
of f by K, see [CGLS22, Theorem 5.3.1]). However, to get a rank 0 result, we need
a cyclotomic Iwasawa Main Conjectures over Q.

1.4. Cyclotomic Iwasawa theory and main conjectures. In the groundbreak-
ing work [GV00], Greenberg and Vastal studied the cyclotomic Iwasawa main
conjectures for elliptic curves in the residually reducible case for the first time. Let
E be an elliptic curve and p be an Eisenstein prime for E, then again there is an
exact sequence

0 Ñ Fppφq Ñ Erps Ñ Fppψq Ñ 0.
Under the assumption that

(GV) φ is either unramified at p and odd, or ramified at p and even,

they proved the main conjecture

CharΛQpXordpE{Q8qq � pLMSD
p pE{Qqq

where XordpE{Q8q � Selp8pE{Q8q_ is the dual of the p-primary Selmer group
of E and LMSD

p is the Mazur–Swinnerton-Dyer p-adic L-function. Here ΛQ is the
cyclotomic Iwasawa algebra. In particular, their extra assumption guarantees that
the µ-invariants of both side are vanishing.

Their arguments should easily generalize to higher weight modular forms, as we
will explain later. However, since we do not expect the µ invariants to be always
vanishing, new ideas are needed to cover the remaining cases. The first attempt
along this line was in [CGS23], where they relaxed the assumption (GV), and they
were able to compare the µ invariants of the algebraic side and the analytic side
without assuming their vanishing. The results in [CGS23] were obtained for elliptic
curves only, under a weaker assumption that when restricted to the decomposition
group Gp, φ|Gp

� 1, ω, which is a weaker assumption (i.e., it implies (GV)). The
removal of the assumptions on characters is done in [KY24a]. We now know the
following

Theorem 1.4.1 (cyclotomic IMC). Let f P Snew2 pΓ0pNqq be a newform. Let p ∤ 2N
be an Eisenstein prime for f , i.e., ρf is reducible. Then

CharΛQpH1
GrpQ,M 1

f q_q � pLMSD
f q.

Here LMSD
f is the Mazur–Swinnerton-Dyer p-adic L-function for higher weight

modular forms and H1
GrpQ,M 1

f q is analogous to the Greenberg’s Selmer group
defined in section 3 where Vf is replaced by V pfq, the dual of our representation ρf
before self-dual twist. In other words, the Selmer group here is for the representation
attached to f before the self-dual twist when f is a newform of weight ¡ 2. For
example, this is the convention in [Kat04], where their representation V pfq attached
to the modular form f is dual to our ρf (so that their V pfq has an unramified
sub-representation while our ρf has an unramified quotient). However, after the
self-dual twist, we arrive at the same representation V pfqprq � ρf p1 � rq � Vf .
When f is an elliptic modular form of weight 2, this Selmer group agrees with the
one above.

One would hope to have a higher weight analog of this theorem, based on
generalizations of [CGS23]. However, currently this result is not known. We
therefore will stick to a weaker version where we still impose the conditions on the
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characters. Due to some technical difficulty, we further assume that the weight is at
most p� 1. In such situations, a result is given in [Hir18, Theorem 0.2]. We want
to mention that here we will study the Main Conjectures for V pfq before self-dual
twist, but the results can still be applied when we eventually pass to the Tamagawa
Number Conjecture for our self-dual Vf .

Theorem 1.4.2 (cyclotomic IMC). Let f P Snew2r pΓ0pNqq be a newform. Let
p ∤ 2N be an Eisenstein prime for f , i.e., such that ρf is reducible. Assume that
2 ¤ 2r ¤ p� 1. Further assume (GV). Then

CharΛQpH1
GrpQ,M 1

f q_q � pLMTT
f q.

Here LMTT
f is the Mazur–Tate–Teitelbaum p-adic L-function.

Proof. The proof is a consequence of the main result of [Hir18], which studies the
canonical periods for higher weight modular forms at Eisenstein primes. It should
be noted that in the proof of this theorem in loc. cit., only the Iwasawa λ-invariants
were compared and hence only an equality up to p-powers was obtained. However,
it seems that the arguments already imply the vanishing of both the algebraic and
analytic µ-invariants for f and one can in fact prove the Iwasawa Main Conjecture
without any ambiguity by p-powers. □

It is implicit in [Hir18] that the p-adic L-function LMTT
f is an element of ΛQ

(rather than only in ΛQ bQ by construction), at least when 2 ¤ 2r ¤ p� 1. For
completeness, we include a possibly new proof of this integrality result for modular
forms of any weight 2r that might be helpful for future purposes. We begin by
recalling some backgrounds.

Kato in [Kat04] studied one divisibility of the cyclotomic Iwasawa Main Conjecture
over the Iwasawa algebra xΛQ :� ZpJGalpQpµp8q{QqK for the Z�

p -extension. In
particular, he showed that certain Selmer group ‘divides’ a p-adic L-function xLf inxΛQ bQ and when ρf is irreducible, xLf is integral, i.e. Lf P xΛQ, and the divisibility
also holds in xΛQ.

Any module M over xΛQ comes equipped with an action of ∆ :� GalpQpµpq{Qq
and we can split M up into the eigenspaces M � Àp�2

i�0 Mi where ∆ acts on
Mi :� Mp�iq∆ by ωi. Now each Mi is a module over our cyclotomic Iwasawa
algebra ΛQ for the Zp-extension. In particular, our p-adic L-function LMTT

f is the
0-th component of Kato’s xLf , i.e., corresponding to the trivial character.

As in [GV00], we would also need to know LMTT
f is integral in the Eisenstein

case. They showed it via explicit computation in the case of elliptic curves. The
integrality result is later proved by Wuthrich in [Wut14] using a different method. In
fact, Wuthrich first proved the integrality of Kato’s zeta elements for elliptic curves
in the Eisenstein case, and then deduce the integrality of the p-adic L-functionxLf as a consequence of Kato’s integral divisibility. We will generalize Wuthrich’s
arguments to show the integrality of LMTT

f for a higher weight modular form f .
Note that our result is not a full generalization since we only focus on ΛQ rather
than the full xΛQ, but it is sufficient for our purpose.

Proposition 1.4.3. Assume φ,ψ|Gp
� 1, ω. Then

CharΛQpH1
GrpQ,M 1

f qq � pLMTT
f q in ΛQ.
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In particular, LMTT
f P ΛQ.

Proof. This result would follow from the same arguments as in [Wut14, Theorem
16] if we consider the 0-th component of all the Iwasawa modules over xΛQ, provided
that we can show that (analogs of conditions in op. cit.):

(i) There is a Galois stable O-lattice T pfq of V pfq for which H1pQΣ{Q, T pfqb
ΛQq is ΛQ-free;

(ii) The local integrality holds for this lattice, i.e., in the notation of op. cit.,
pZpT q0,Pq � H1pT q0,P for all height 1 prime P of ΛQ (see [Wut14, Lemma
12]).

where V pfq is the p-adic representation attached to f in [Wut14] (also in [Kat04]),
which is dual to our ρf . In particular, a choice of a Galois stable lattice T pfq in V pfq
corresponds to a choice of Tf in Vf � ρf p1� rq via the relation T pfq_p1� rq � Tf .
In fact, we will show that any lattice Tf with ϑ|Gp

� 1, ω would work. Equivalently,
if we let φ1, ψ1 be the characters appearing in the semisimplifaction of the residual
representation ρpfq of V pfq, then φ1|Gp , ψ

1|Gp � 1.
Now let Tf be any lattice such that φ,ψ|Gp

� 1, ω (so φ1|Gp
, ψ1|Gp

� 1) and let
H1pTq :� H1pQΣ{Q, T pfq b ΛQq. We claim that H1pTqrT s � 0 and H1pTq{T is O-
free, from which the result would follow from Nakayama’s Lemma (see e.g. [KY24a,
Lemma 1.1.2]). From the long coholomogy sequence applied to the short exact
sequence

0 Ñ T �TÝÑ T Ñ T{T p� T pfqq Ñ 0,

we know there is a surjection H0pQΣ{Q, T pfqq↠ H1pTqrT s and that pH1pTq{T qtors
is contained in H1pQΣ{Q, T pfqqtors. However, H0pQΣ{Q, T pfqq � 0 since it’s O-
torsion free and H0pQΣ{Q, T pfqq{p � H0pQΣ{Q, T pfq{pq � H0pQΣ{Q, ρpfqq � 0.
The last equality follows from the fact that φ1|Gp , ψ

1|Gp � 1. H1pQΣ{Q, T pfqqtors

is also trivial since there is a surjection 0 � H0pQΣ{Q, ρpfqq↠ H1pQΣ{Q, T pfqqrps.
Thus H1pTqrT s � 0 and H1pTq{T is O-torsion free (hence O-free). Hence (i) is
satisfied.

In fact, one can show (ii) holds for any lattice. By [Ver23, Theorem 8] (see also
the end of section 2 in loc. cit.), the local integrality will hold for any lattice overxΛQ if it holds for one. It is shown in [Kat04, Theorem 13.14] for Kato’s ‘canonical
lattice’ TOλ

pfq, so it indeed holds for any lattice. Now the sames holds for ΛQ if we
take the 0-th component of the Iwasawa modules. Hence (ii) is also satisfied.

□

Remark 1.4.4. As the assumption in the above proposition is weaker than (GV)
in Theorem 1.4.2, the above integrality result applies in the setting of [Hir18].

Finally, we discuss the interpolation property of the Mazur–Tate–Teitelbaum p-
adic L-function we need for the application to rank 0 Tamagawa Number Conjecture.
As is mentioned earlier, the cyclotomic Main Conjecture proved above is for the
representation attached to f before the self-dual twist, while the control theorem
we will consider later is for the Selmer group for f after self-dual twist. We now fill
this gap, which can be easily done thanks to [Kat04, Proposition 17.2]
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Lemma 1.4.5. Let M 1
f prq :� T pfqprq b Λ_

Q corresponding to the r-th Tate twist
of V pfq. Then the Selmer group H1

GrpQ,M 1
f prqqp�rq � H1

GrpQ,M 1
f q and it is ΛQ-

cotorsion. In particular, H1
GrpQ,M 1

f prqq agrees with the Selmer group H1
GrpQ,Mf q

defined in section 3.

Proof. That the Selmer group is not affected by Tate twists is given in [Kat04,
Proposition 17.2] , after we take the 0-th eigen-components of everything. That it
is cotorion follows from [Kat04, Proposition 17.4]. The last assertion follows from
the fact that the r-th Tate twist of V pfq is the self-dual twist corresponding to our
Vf � ρf p1� rq. □

If we let F 1 P ΛQ be a generating power series of H1
GrpQ,M 1

f q, then Theorem 1.4.2
says that F 1 � LMTT

f . If F P ΛQ is a generating power series of H1
GrpQ,Mf q, then

from the above lemma we see that Fp1q � F 1pχr0q :� χr0pF 1q (here ‘�’ means they
generate the same O-ideal after evaluation at corresponding characters), where χ0
is the map ΛQ Ñ Q�

p induced by the map ΓQ � GalpQ8{Qq Ñ GalpQ8{Qq �
GalpQpµpq{Qq � GalpQpµp8q{Qq χcycÝÝÝÑ Z�

p . Here the first map is given by the lift
x Ñ px, 1q and the second map by the cyclotomic character. Thus LMTT

f pχr0q :�
χr0pLMTT

f q � Fp1q.
On the other hand, from the interpolation property of the p-adic L-function

LMTT
f (see e.g. [Kat04, Theorem 16.2(ii)]), one knows

(1.1) LMTT
f pχr0q � p1� pr�1

α
q2 � pr � 1q!p2πiqr�1

Ωf
� Lpf, rq

where Ωf � Ω� is the period depending on the parity � � p�1qr�1.
In section 3, we will study Fp0q :� Fp1q.

2. Heegner cycles and p-adic Abel–Jacobi maps

In this section, we introduce the Heegner cycles, which are certain cycles in
the Chow group of the Kuta–Sato variety whose images under the p-adic Abel–
Jacobi in the Bloch–Kato Selmer groups are expected to be non-torsion. They
appear in the (p-adic) Gross–Zagier formulae and eventually allow us to control the
Tate-Shafarevich group.

2.1. Kuga–Sato varieties. We start by considering the Kuga–Sato varieties in two
similar settings. Let EpNq Ñ XpNq be the universal generalized elliptic curve over
the compact modular curve XpNq of level ΓpNq. The Kuga–Sato variety Ẽ2r�2pNq
is then defined as the canonical desingularization of the p2r � 2qnd fiber product of
EpNq with itself over XpNq.

In [BDP13, section 2.1], a different universal generalized elliptic curve E1pNq Ñ
X1pNq was considered, where X1pNq is the compact modular curve of level Γ1pNq,
thus yielding a different Kuga–Sato variety W2r�2 :� Ẽ2r�2

1 pNq constructed in
the same way. Cycles constructed from different Kuga–Sato varieties have been
considered by different people. We will compare these cycles near the end of this
work. In fact, [BDP13] introduced a generalization of the Kuga–Sato varieties.
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2.2. Masoero’s Heegner cycles over ΓpNq. In this section, we introduce Heegner
cycles over ΓpNq constructed in [Mas17, Section 4.1] (see also [Tha22, Section 5.2]).
Again let K � Qp?�Dq be an imaginary quadratic field satisfying Assumption 1.2.1.

The N -isogeny C{OK Ñ C{N�1 induces a Heegner point x1 P X0pNq which is
rational over the Hilbert class field K1 of K by the theory of complex multiplication.
A lift x P π�1px1q of x1 under the canonical projection π : XpNq Ñ X0pNq
corresponds to an elliptic curve Ex of full level N and complex multiplication by
OK . Fix the unique square root

?�D with positive imaginary quadratic part. Let
Γ?�D P Ex �Ex be the graph of

?�D and let ix : π�1
2r�2pxq � E2r�2

x ãÑ Ẽ2r�2pNq.
We call

∆N :� ΠBΠεpixq�pΓr�1?�Dq P ΠBΠεCHrpẼ2r�2pNq{K1 b Zpq
Masoero’s cycle, where the projector ΠBΠε are as in [Mas17, Section 2.1, Section
3.1] (see also [Tha22, Section 5.1]).

2.3. Zhang’s cycles. For later use, we also briefly explain the cycles constructed by
Zhang in [Zha97] built from Heegner cycles from the previous section. We follow the
arguments in [LV23, Section 4.1 and Section 4.2]. We denote Ẽ2r�2pNq by W 1

2r�2.
Let Ex be the elliptic curve as before and let Zpxq be the divisor class on Ex�Ex

of Γ?�D � Ex � t0u Y t0u � Ex. Let Γ̃ denote the cycle

ΠBΠεpixq�pZpxqr�1q P ΠBΠεCHrpW 1
2r�2{K1q

Let W2rpExq denote the cycle¸
gPG2r�2

sgn g�pZpxqr�1q P CHrpW 1
2r�2qQ,

where G2r�2 denotes the symmetric group of 2r � 2 letters which acts on E2r�2
x by

permuting the factors.
Then from Lemma 4.1 in op. cit., we get the relation

(2.1) Γ̃ � ΠBWrpExq
p2r � 2q! P ΠBΠεCHrpW 1

2r�2qQ.

Zhang’s cycle S2rpExq with real coefficients is defined by
S2rpExq� c �W2rpExq,

where c P R is a positive constant such that the self-intersection of S2rpExq on each
fiber is equal to p�1qr�1. In fact, from [LV23, Equation (4.12)], we know

c � 1
pr � 1q! �ap2r � 2q! � p?�2DKqr�1

.

Zhang’s cycles are closely related to Masoero’s cycles, as we will see in section 2.7.

2.4. BDP’s Heegner cycles over Γ1pNq. In this subsection we study a special
case of the generalized Heegner cycles introduced in [BDP13]. We will follow the
construction in [BDP17, Section 4]. Note that for our purpose, it is enough to
consider the classical Heegner cycles corresponding to r1 � 2r � 2, r2 � 0 in the
notations of loc. cit..

Recall that f P Snew2r pΓ0pNqq is a newform of weight 2r ¥ 2. We continue to
assume the Heegner hypothesis (Heeg), which guarantees the existence of an ideal
N � OK with

OK{N � Z{NZ.
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Let A � C{OK be an elliptic curve defined over the Hilbert class field K1 of K
with CM by K and fix a generator t of the cyclic group ArN s. The pair pA, tq then
defines a point P on the modular curve X1pNq which is defined over an abelian
extension of K.

For an ideal a P OK , write Aa for the elliptic curve C{a�1 and let φa denote the
canonical isogeny of degree Na,

φa : A � C{OK Ñ C{a�1 � Aa.

Let W2r�2 be the Kuta–Sato variety of dimension 2r � 1 over X1pNq. We now
construct a cycle

∆a P CHrpW2r�2{K1q0,Q
for every ideal a P OK that is prime to N .

Let ta denote the image of t under the map φa. Then the pair pAa, taq defines a
point Pa on the modular curve X1pNq. The fiber of W2r�2 over Pa is canonically
isomorphic to A2r�2

a . Now define

Γa � pgraph of ?�Dqtr P Z1pAa �Aaq
and let

∆a :� εW pΓr�1
a q P CHrpW2r�2{K1qQ.

Here εW is the projectors on W described in [BDP13, Section 2.1]. It should
be noted that ∆a can be shown to be homologically trivial on W2r�2 using the
arguments in Section 2.2 and section 2.3 in op. cit..

We mention that the above cycle is different from the one considered in [BDP13]
in that they consider the cycles ∆BDP

a corresponding to r1 � r2 � 2r � 2 that live
in CH4r�3pX2r�2{K1q0,Q, where X2r�2 � W2r�2 � A2r�2. According to [BDP13,
Section 2.4], ∆BDP

a contains at least as much information as ∆a. We will come back
to the comparison of the cycles in section 2.7.

Finally, we remark that the Heegner point κ8 in Theorem 1.3.2(IMC1) can be
compared to certain Heegner class κ1 (see [CGLS22, Remark 4.1.3]) which in turn
is essentially constructed from the cycles ∆BDP

a (see for example, [CH18, section
4]). In section 2.7 we will see that under some reasonable hypothesis, (Abel–Jacobi
image of) ∆a is non-torsion if and only if (that of) ∆BDP

a is non-torsion.

2.5. The Bloch–Kato logarithm. To define the p-adic Abel–Jacobi maps, we first
recall the Bloch–Kato logarithm studied in [BK07]. We first recall some definitions
from p-adic Hodge theory.

Let F be a finite extension of Qp and let V be a finite dimensional GF -
representation. Let BdR be Fontaine’s ring of p-adic periods and let DdR pV q �
pV bQp BdR qGF . Then DdR pV q is a F -vector space equipped with a decreasing
filtration

tFilrDdR pV qurPZ

satisfying YFilrDdR pV q � DdR pV q and XFilrDdR pV q � 0. We say that V is a de
Rham representation if dimQp

pDdR pV qq � dimQp
pV q.

For a de Rham representation, The Bloch–Kato exponential map is a morphism

expF,V : DdR pV q
Fil0DdR pV q

ãÑ H1pF, V q

with image H1
epF, V q � H1pF, V q.
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The Bloch–Kato finite subspace H1
f pF, V q � H1pF, V q is defined as

H1
f pF, V q� kerpH1pF, V q Ñ H1pF, V bQp Bcris qq

where Bcris � BdR is the ring of crystalline periods. Let Dcris pV q � pV bQp

Bcris qGF . Then Dcris is a F0-vector space equipped with a crystalline Frobenius
action Φ, where F0 is the maximal unramified extension of Qp in F . Suppose
Dcris pV qΦ�1 � 0 where Φ is the Frobenius operator, then one could identify
H1
epF, V q with H1

f pF, V q. Moreover, expF,V would become an isomorphism onto its
image H1

epF, V q.
If V is a de Rham representation with Dcris pV qΦ�1 � 0, then the Bloch–Kato

logarithm is defined by the inverse of expF,V

logF,V : H1
f pF, V q �ÝÑ DdR pV q

Fil0DdR pV q
For our application, we will let F be a finite extension of the completion of Qpfq

at a prime p | p and let V be the self-dual twist of Vf as in the introduction. In
particular, all assumptions above are satisfied and the logarithm maps extends to

logF,V : H1
f pF, V q �ÝÑ DdR pV q

Fil0DdR pV q
� pFil1pDdR pV qqq_ � F

where the middle isomorphism is given by the de Rham cup product pairing
 ,¡: DdR pV q �DdR pV q Ñ F

with respect to which Fil0pDdR pV qq and Fil1pDdR pV qq are exact annihilators of
each other.

One could choose a differential ω in Fil1DdR pV q, thus defining a map logω :
H1
f pF, V q Ñ F by composing logF,V with evaluation at ω.

2.6. p-adic Abel–Jacobi maps. Similar to the Heegner cycles, one can study
p-adic Abel–Jacobi maps in different settings. In this section we discuss some
background, and the exact maps that are referred to as the p-adic Abel–Jacobi maps
will be made clear in the next section.

2.6.1. p-adic Abel–Jacobi map over ΓpNq. Here we briefly recall the p-adic Abel–
Jacobi map discussed in [Mas17].

Recall the p-adic sheaf F over Y pNq in Section 2.1 in loc. cit. defined by

F :� limÐÝ
n

Sym2r�2pR1π�pZ{pnqqpr � 1q.

Let
Jp :� ΠBH1

étpXN bQ, j�Fqprq.
Then the Hecke algebra T over Z generated by the Hecke operators Tℓ acts on

Jp. If we write If for the kernel of the map TÑ OQpfq sending Tℓ to aℓ, one knows
the continuous GQ-representation

Ap :� tx P Jp|If � x � 0u
is O-free of rank 2 by [Nek92, Proposition 3.1]. In fact, Ap b F is identified with
the self-dual twist of Deligne’s representation attached to f , which in turn can be
identified with our Vf (see [Tha22, Section 5.4]). Thus we can think of Ap bO as a
Galois stable lattice Tf of Vf .
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One knows that there is a map (eq. (3) in [Mas17])
H1

étpW 1
2r�2 bQ,Zpprqq Ñ Jp Ñ Ap

For any number field L, there is a p-adic Abel–Jacobi map defined by (see [Tha22,
Section 5.6])

Φ : CHrpW 1
2r�2{Lq0 bZ Zp Ñ H1pL,H1

étpW 1
2r�2 b L,Zpprqq.

Composing Φ with the map that is H1pL, �q of the above map and then applying
bO or bF give the maps

AJfL : CHrpW 1
2r�2{Lq0 bO Ñ H1pL, Tf q.

and
AJfL : CHrpW 1

2r�2{Lq0 b F Ñ H1pL, Vf q.
In particular, from [Mas17, Corollary 3.2], one knows the images are in H1

f pL, Tf q
and H1

f pL, Vf q respectively.

Remark 2.6.1. Here in the construction, Tf is naturally the ‘canonical lattice’ in
Vf . Start from now, we will only work with this Tf . Note that our setting is that
the subrepresentation Fpφq of ρf is either ramified at p and even, or unramified and
odd for one (and hence for all) Galois stable lattice T in Vf so all the results apply
to this choice.

2.6.2. p-adic Abel–Jacobi map over Γ1pNq. We next consider the p-adic Abel–Jacobi
map for classical Heegner cycles over Γ1pNq defined in [BDP17].

Let K be an imaginary quadratic field satisfying Assumption 1.2.1. In particular,
p � vv is split in K. As in [BDP17, Seciton 2.4], let V � H2r�1ppW2r�2qK ,Qpprqq.
Let Vf be the self-dual Galois representation attached to a modular form f P
Snew2r pΓ0pNqq.

Taking j � r, the map βv : CHrpW2r�2{K1q0,Q Ñ pFilrH2r�1
dR ppW2r�2qK1,vqq_

in [BDP17, section 2.4] is the p-adic Jacobi map that relates classical Heegner cycles
over Γ1pNq to the BDP p-adic L-function (see Theorem 4.1.3 or [BDP17, Theorem
4.1.3]). It is defined as a composition

βv :� PD � logKv,V �δ0,v

where δ0,v is the composition

CHrpW2r�2{K1q0,Q
δ0ÝÑ H1pK, H2r�1ppW2r�2qK , Qpprqq resvÝÝÝÑ H1pKv, H2r�1ppW2r�2qK , Qpprqq,

of restriction and δ0 � AJét the étale Abel–Jacobi map, logK,V is the Bloch–Kato
logarithm in the previous section and PD denotes Poincaré Duality:

PD : DdR pV q
Fil0DdR pV q

� H2r�1
dR ppW2r�2qK1,v

q
FilrH2r�1

dR ppW2r�2qK1,v

� pFilrH2r�1
dR ppW2r�2qK1,v

qq_.

The composition makes sense because the image of δ0,v is contained in the
subgroup H1

f pKv,H2r�1ppW2r�2qK ,Qpprqqq by [Nek00, Theorem 3.1(i)].
We mention that the map δ0 also induces a map CHrpW2r�2{K1q0,Q Ñ H1pK1, Vf q

(see [Tha22, Section 5.6]).
We recall the differential ωf P FilrH2r�1

dR ppW2r�2qK1,v q � Fil2r�1H2r�1
dR ppW2r�2qK1,v

q
associated to f in [BDP13, Corollary 2.3] (see also Lemma 2.2(3) there). The above
map βv can be then composed with ‘evaluation at ωf ’. From the discussion at the
end of the last subsection, one can also view ωf as in Fil1DdR pV q.
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Finally, we mention that one can also make sense of the above maps with X2r�2
in place of W2r�2, as is the case in[BDP13]. For example, one can define

δBDP
0 : CH2r�2pX2r�2{K1q0,Q Ñ H1pK,H4r�3ppX2r�2qK ,Qpp2r � 1qq,

and
βBDP
v : CH2r�1pX2r�2{K1q0,Q Ñ pFil2r�1H4r�3

dR ppX2r�2qK1,v
qq_,

where βBDP
v can be composed with evaluation at ωf^ωr�1

A ηr�1
A P Fil2r�1H4r�3

dR ppX2r�2qK1,v
q

introduced in [BDP13, Section 2.2].

2.7. Abel–Jacobi images of Heegner cycles. In this subsection we focus on the
applications of the results in the previous sections to our self-dual GK -representation
Vf . Recall that we are working over the canonical Galois stable lattice Tf of Vf .
Recall also that K1 denotes the Hilbert class field of K.

For our convenience, we denote by AJfK1,1 the map

δ0 : CHrpW2r�2{K1q0,Q bO Ñ H1pK1, Tf q.
and we abbreviate the evaluation of βv � PD�logKv,H2r�1ppW2r�2{K1qK

,Qpprqq �locv�δ0

at a differential w P FilrH2r�1
dR ppW2r�2qK1,v q as logwpAJfK1,1q.

By abuse of notation, we also denote by AJfK1
the map

CHrpW 1
2r�2{K1q0 bO Ñ H1

f pK1, Tf q
Assumption 2.7.1. We assume that all p-adic Abel–Jacobi maps are injective.

This is a standard hypothesis in the literature. Sometimes we still call the
Abel–Jacobi images of Heegner cycles ‘Heegner cycles’.

Notice that there is a Gross–Zagier type formula for Heegner cycles over ΓpNq
for modular forms obtained by Zhang (Theorem 4.1.1). However, the p-adic version
of BDP (Theorem 4.1.3) concerns the Heegner cycles over Γ1pNq, while there is no
known formula of Gross–Zagier type for Γ1pNq. This unfortunate inconsistency is
the main obstacle in obtaining a rank 1 Tamagawa Number formula using current
approaches.

Luckily, there are a few well-understood relation between the different Heegner
cycles in terms of the p-adic Abel–Jacobi maps.

Proposition 2.7.2. rim pAJfK1,1q : AJfK1,1p∆aqs � rim pAJfK1
q : AJfK1

p∆N qs.
Proof. This is [Tha22, Proposition 10.6, Proposition 10.7]. In particular, one knows
the index is independent of a. □

A consequence of this comparison is that the ∆a is non-torsion if and only if ∆N

is non-torsion.
Similarly, one can relate ∆a to ∆BDP

a . Define JZp

BDP as in [Tha22, Section 5.6].
Then one can define AJfK1,BDP : CH2r�2pX2r�2{K1q0bZ Zp Ñ H1

f pK1, J
Zp

BDPq which
we also assume to be injective and one has the following relation.

Proposition 2.7.3. rim pAJfK1,1q : AJfK1,1p∆aqs � rim pAJfK1,BDPq : AJfK1,BDPp∆BDP
a qs.

Proof. This is in [Tha22, Section 10.5]. Again, this index is independent of a. □
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Consequently, ∆a is non-torsion if and only if ∆BDP
a is non-torsion.

These comparisons allow us to take the advantage of the Gross–Zagier–Zhang
formula for ∆N to relate the behavior of L-functions to that of ∆BDP

a (or rather,
κ8. But see the end of section 2.4) in the Heegner point Main Conjecture (see The-
orem 1.3.2(IMC1)). More precisely, if one assumes κ1 is ΛK-nontorsion, then
its projection to H1

BKpK,Tf q, which is
°
rasPPicpOKq AJfK1,BDPp∆BDP

a q, will be Zp-
nontorsion. This implies ∆BDP

a is non-torsion an hence ∆N is nontorsion. Finally,
desptie the difference between Masoero’s cycle and Zhang’s cycle, it is implicit
in [Mas17] that

AJfK1
p∆N q � AJfK1

pΓ̃q.
In particular, if ∆N is non-torsion, so is Zhang’s cycle by eq. (2.1). This will be the
key in the proof of Theorem 4.4.3.

3. Control theorems

3.1. A cyclotomic control theorem. In this subsection we recall a cyclotomic
control theorem for modular forms. Again let f be a newform of weight 2r. ΛQ :�
OJΓQK will denote the cyclotomic Iwasawa algebra over Q, where ΓQ :� GalpQ8{Qq.
Recall that p | p is a chosen place of Qpfq. If one further assumes appfq � 1
pmod pq, the control theorem is the main result of [LV21] for F � Q. This
additional hypothesis will be satisfied for our application (however, we do not
need to assume it in the next two subsections). Indeed, by the description of the
residual representation attached to a modular form (see e.g. [Kri16, Theorem 34]),
the quotient representation is given by a power of mod-p cyclotomic character
coming from self-dual twist multiplied by an unramified character taking Frobp to
αp, the unit root of the Hecke polynomial x2 � appfq � p2r�1. Now if we assume
φ|Gp

, ψ|Gp
� 1, ω, then αp � 1 pmod pq. But appfq � αp � p2r�1{α1, so appfq � 1

pmod pq as well.
Recall that Vf � ρf p1� rq is self-dual.

Definition 3.1.1. Let L be an number field and let v be any place of L. The
unramified local condition is defined as

H1
urpLv,�q � ker

�
H1pLv,�q Ñ H1pIv,�q

�
where Iv � GLv

is the inertia subgroup at v.
Let Bcris be Fontaine’s crystalline ring of periods. If v | p, the Bloch–Kato local
conditions on Vf and Af are respectively defined as

H1
f pLv, Vf q :� ker

�
H1
f pLv, Vf q Ñ H1pLv, Vf bQp Bcris q

�
and

H1
f pLv, Af q :� im

�
H1
f pLv, Vf q Ñ H1pLv, Af q

�
where the last arrow is induced by the canonical map H1pLv, Vf q Ñ H1pLv, Af q.
If v ∤ p, the Bloch–Kato local conditions on Vf and Af are respectively defined as

H1
f pLv, Vf q :� H1

urpLv, Vf q
and

H1
f pLv, Af q :� im

�
H1
f pLv, Vf q Ñ H1pLv, Af q

�
.
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The Bloch–Kato Selmer group of Af over L is defined as

H1
BKpL,Af q :� ker

�
H1pL,Af q Ñ

¹
v

H1pLv, Af q
H1
f pLv, Af q

�
,

where v runs over all places of L.

To define Greenberg’s Selmer groups, we need a new type of local conditions.
Again let � be Vf or Af . We first recall a short exact sequence

0 Ñ Fil�pVf q Ñ Vf Ñ Fil�pVf q Ñ 0
such that Fil�pVf q is one dimensional, which is characterized by the fact that
Fil�pVf q is an unramified character times the p1 � rq-th power of the cyclotomic
character coming from the self-dual twist. Define Fil�pTf q � Tf X Fil�pVf q and
let Fil�pAf q :� Fil�pVf q{Fil�pTf q, Fil�pAf q :� Af {Fil�pAf q. We mention that
when f is weight 2 with associated elliptic curve E of good ordinary reduction at
p, Fil�pTpEq is just the kernel of the reduction map TpE Ñ TpẼ where Ẽ is the
reduction of E at p, and Fil�pVpEq � Fil�pTpEq bQp.

Let Mf :� Tf b Λ_
Q and let �be Vf , Af or Mf .

Definition 3.1.2. The ordinary local condition is defined as
H1

ordpLv,�q � ker
�
H1pLv,�q Ñ H1pIv,Fil�p�qq�

The Greenberg’s Selmer group is defined as

H1
GrpL,Mf q :� ker

�
H1pL,Mf q Ñ

¹
v|p

H1pLv,Mf q
H1

ordpLv,Mf q
�
¹
v∤p

H1pLv,Mf q
H1

urpLv,Mf q
�

where v runs through all primes of L.

Remark 3.1.3. From Shapiro’s lemma, we have H1pL,Mf q � H1pL8, Af q where
L8 is the cyclotomic Zp extension of L. The same is true for the local cohomology
groups and Selmer groups.

By [LV21, sectoin 3.3.3], when v | p, one has H1
f pLv, Af q � H1

ordpLv, Af q. When
v ∤ p, one can show that H1

f pLv, Af q � H1
urpLv, Af q and from [LV21, Lemma 3.1],

the index rH1
urpLv, Af q : H1

f pLv, Af qs is finite.

Definition 3.1.4. Let v be a place of a number field L not above p. The p-part of
the Tamagawa number of Af at v is the integer

cvpAf {Lq :� rH1
urpLv, Af q : H1

f pLv, Af qs
The rest of the section is devoted to the proof of the following cyclotomic control

theorem. As in [LV21, section 2.2-2.3], let
Σ :� tprimes of L at which V is ramifiedu Y tprimes of L above pu

Y tarchimedean primes of Lu,
which is a finite set. For the following theorem, take L � Q. Let QΣ be the maximal
extension of Q unramified outside Σ. Then by Lemma 5.2 in op. cit., the Selmer
groups can be redefined as

H1
BKpQ, Af q � ker

�
H1pQΣ{Q, Af q Ñ

¹
vPΣ

H1pQv, Af q
H1
f pQv, Af q

�
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and

H1
GrpQ,Mf q � ker

�
H1pQΣ{Q,Mf q Ñ H1pQp,Mf q

H1
ordpQp,Mf q

�
¹

ℓPΣ�tpu

H1pQℓ,Mf q
H1

urpQℓ,Mf q
�
.

Now we can state the cyclotomic control theorem we will need.

Theorem 3.1.5. Suppose that H1
BKpQ, Af q is finite. Suppose the assumption at

the beginning of this section are satisfied. Then
(i) H1

GrpQ,Mf q is ΛQ-cotorsion;
(ii) If F is the characteristic power series of the Pontryagin dual of H1

GrpQ,Mf q,
then Fp0q � 0;

(iii) There is an equality

#pO{Fp0qq � #H1
BKpQ, Af q �

¹
vPΣ,v�p

cvpAf {Qq

Proof. This is the main result of [LV21]. □

3.2. An anticyclotomic control theorem of Greenberg type. In this section
we introduce an anticyclotomic theorem similar to that in [Gre99], which will be
used in the proof of the higher weight p-converse theorem. The notations are
from section 1. We do not make the assumption from the last subsection that
appfq � 1 pmod pq.
Theorem 3.2.1. Assume that p ∤ 2N . Then the map

H1
BKpK,Af q Ñ H1

FΛK
pK,Mf qΓK

has finite kernel and cokernel.

Proof. The proof is similar to that of [KY24b, Theorem 2.4.1]. □

3.3. An anticyclotomic control theorem of Jetchev–Skinner–Wan type.
In this section, we consider another control theorem for the anticyclotomic Selmer
groups introduced in [JSW17]. As is in the case of [CGLS22] (or rather [KY24a]),
the anticyclotomic Selmer groups generate the same ΛK -characteristic ideals as the
unramified Selmer groups. This control theorem is thus good for a rank 1 Tamagawa
Number formula. We remark that we do allow non-trivial global torsion in this
section for future use and we do not make the assumption that appfq � 1 pmod pq.

Recall that K is an imaginary quadratic filed satisfying Assumption 1.2.1. Let
XΣ

acpMf q be the Pontryagin dual of the anticyclotomic Selmer group H1
FΣ

ac
pK,Mf q

defined in [JSW17].

Theorem 3.3.1. Assume that
(i) The OL-module im AJK has rank 1

(ii) #XNekpf{Kq   8
(iii) Localization: For each place v | p of K, the localization map H1

BKpK,Af q Ñ
H1
f pKv, Af q restricts to a map

pim AJKq bOL
pL{OLq Ñ pimAJKv

q bOL
pL{OLq

of which the kernel is torsion.
(iv) Local corank 1: For each place v | p of K, the OL-module H1

f pKv, Af q has
corank 1.
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Let fΣ
ac be a generator of the characteristic ideal CharΛpXΣ

acpMf qq of the torsion
Λ-module XΣ

acpMf q, then

(3.1) #O{fΣ
acp0q �

#XBKpf{Kq � CΣpAf q
p#H0pK,Af qq2

p#δvq2,

where

CΣpAf q � #H0pKv, Af q�#H0pKv, Af q�
¹

wPSpzΣ,w split

#H1
nrpKw, Af q�

¹
wPΣ

#H1pKw, Af q,

and

δv � pOL : OL � logωplocvCqq
pOL : logωpH1

f pKv, Tf q{torsqqpH1
f pK,Tf q{tors : OL � Cq

where C is any cycle whose image under the localization map has finite index in
H1
f pKv, Tf q, and ω is any differential such that logω restricts to an isomorphism

logω : H1
f pKv, Tf q{tors � OL (as a ring).

Proof. The above formula essentially follows from the computation in [JSW17,
Section 3]. Indeed, it is checked in [Tha22, Section 8.1] that the assumptions
in [JSW17] are satisfied, then equation (3.1) comes from [KY24a, Appendix B] (for
the residually reducible case), similarly as in [Tha22, Theorem 8.1]. Note that the
assumption (i) Congruence: k{2 is not congruent to 0 or 1 modulo p� 1 from loc.
cit. is not necessary because the arguments in [KY24a] do not need to assume the
(HT) hypothesis from [JSW17]. Here δv is the localization map

locv{tors : H1
f pK,Tf q{tors Ñ H1

f pKv, Tf q{tors,

and the computation of δv comes from that in [Tha22, Theorem 8.2], noting that
we need to replace H1

f pK,Tf q by H1
f pK,Tf q{tors if we allow torsion.

□

Remark 3.3.2. (i) We now study the assumptions in Theorem 3.3.1. We will
mostly be concerned with the hypothetical situation where one aims to get a
rank 1 Tamagawa Number formula, so assuming ords�kLpf, sq � 1, (i) and
(ii) are natural consequences of Gross–Zagier–Zhang–Kolyvain–Nekovář
theorem, where one chooses a cycle CN coming from the classical Heegner
cycles considered by both Zhang and Nekovář. From the sequence (0.2),
they already imply H1

BKpK,Af q has corank 1. (iv) comes from the fact that
H1
f pK,Vf q is 1-dimensional and propagation turns rank into corank. Now

(iii) is a consequence of a standard hypothesis that the localization map
should be surjective or at least non-zero.

(ii) In practice, one can take C to be certain Abel–Jacobi image of Heegner
cycles. One could simply take ω to be the ωf in section 2.6. Both will be
discussed in section 4.5.

4. Proof of the p-part Tamagawa number conjecture formula

4.1. Preliminaries.
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4.1.1. Gross–Zagier formulae. Recall the class S2rpExq defined in section 2.3. Let
V and V 1 be as in [Zha97, Section 0.3], Extend f to a basis tf � f1, ..., ftu to an
orthonormal basis of V 1 with respect to the Petersson inner product p�, �qΓ0pNq and
let V 1

f be the f -eigencomponent of V 1. Put s1f to be the image of S2rpExq in V 1
f and

take χ to be trivial in loc. cit..

Theorem 4.1.1 (Gross–Zagier–Zhang formula).

L1pf, rq � 24r�1π2rpf, fqΓ0pNq
p2r � 2q!u2h

a|D| xs
1
f , s

1
f y.

Proof. This is [Zha97, Corollary 0.3.2]. □

Here the pairing  ,¡ is the Gillet–Soulé pairing, which is only conjectured to
be non-degenerate. We assume it is non-degenerate, so that a Heegner cycle is
non-torsion if and only if L1pf, rq is nonvanishing.

Assumption 4.1.2. The Gillet–Soulé pairing is non-degenerate.

Theorem 4.1.3 (p-adic Gross–Zagier formula). Let ∆1 be the classical Heegner
cycle over Γ1pNq and let C1 �

°
rasPPicpOKqAJ

f
K1
p∆aq. Then

logωf
plocvC1q2 � p�4Dqr�1p1� p�rappfq � p�1q�2Lppf,Nr

Kq.

Here ωf is the differential assigned to f as in [BDP13, Corollary 2.3]. In particular,
locvpC1q has finite index in H1

f pKv, T q.

Proof. This is [BDP17, Theorem 4.1.3]. We make the choices r1 � 2r�2, j � r2 � 0
(corresponding to classical Heegner cycles) and χ � NK . That locvpC1q has finite
index is an obviously corollary since the above formula shows OL logωf

plocvpC1qq
has finite index in OL � L

logωf
,�

ÐÝÝÝÝÝ H1
f pKv, V q and OL � logwf

H1
f pKv, T q �

OL logwf
plocvpC1qq. Note that Lppf,Nr

Kq is our notation is identified with LBDP
f p0q.

□

4.2. Computation of the local index in the Wach module.

Theorem 4.2.1. In eq. (3.1), we have

ordppOL : logωpH1
f pKv, Tf q{torsqq � ordp

� #H0pKw, Af q
1� p�rappfq � p�1

�
Proof. For brevity, we write pV, T,Aq for pVf , Tf , Af q.

We begin the proof by noting that ω does not play any role in the formula.
Indeed, by Fontaine-Laffaille theory (see for example [LLZ14, Theorem 6.10.8].
See also [BK07, Section 4]), the Bloch-Kato logarithm takes H1

f pKv, T q{tors to
p1�φq�1D

p1�φq�1DXFil0DdR pV q , where D � DdR pV q is the strongly divisible lattice corre-
sponding to T . Here φ is a Frobenius action.

The map expω is the inverse of a composition of isomorphisms (see section 2.5)



26 MULUN YIN

logω : H1
f pKv, V q DdR pV q

Fil0DdR pV q L L

H1
f pKv, T q{tors

p1�φq�1D
p1�φq�1DXFil0DdR pV q pmOL pmOL

log � �ω

log

�

�

� �

�ω

�

where m � ordppOL : logωpH1
f pKv, T q{torsqq. It is then clear that we could ignore

the last column and compute m with the first three columns.
Now by [BK07, Theorem 4.5], the index we need to compute is ordpph1pDq{tors :

p1�φq DD0 q where D0
� DXFil0pDdR pV qq and h1pDq � coker p1�φ|D0 : D0 Ñ Dq.

Consider the commutative diagram

0 0 0

0 D0 D D
D0 0

0 D0 D h1pDq 0

0 coker p1� φq coker p DD0
1�φÝÝÝÑ h1pDqq

� 1�φ 1�φ
1�φ|D0

where coker p DD0
1�φÝÝÝÑ h1pDqq is identified with coker p1 � φq by snake lemma.

Therefore m � ordpp h
1pDq{tors

coker p1�φq q.
We now compute the denominator using the explicit description of the strongly

divisible lattices in DdR pV q and Wach modules given in [LZ13, Section 2–5]. Recall
that we have a self-dual twist

ρ�f p1� rq �
�
χrλpαq �

0 χ1�rλpα�1q



where χ is the p-adic cyclotomic character and λpxq denotes the unramified character
of GQp

mapping geometric Frobenius to x. Here α is the unit root of the Hecke
polynomial

T 2 � appfqT � pk�1.

Letting α1 � p1�rα, then we get the ‘twisted’ Hecke polynomial

T 2 � p1�rappfqT � p

having α1 as a root. In particular, ordpp1� α1q � ordpp1� p1�rap � pq.
Now in the pφ,Γq�module in section 5 of op. cit., the matrices P and G giving

the action of φ and a γ P Γ respectively, look like

P �
�
α �
0 α�1
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and

G �
�
χpγqr �

0 χpγq1�r



in a basis pv1, v2q. Letting pn1, n2q � pπ�rv1, π
r�1v2q, then the matrices of φ and γ

in the basis pn1, n2q are given by

P 1 �
�

πr

φpπqrα �
0 π1�r

φpπq1�rα
�1

�
and

G1 �
�

πr

γpπrqχpγqr �
0 π1�r

γpπ1�rqχpγq1�r
�

where φpπq � pπ � 1qp � 1. One checks as in op. cit. that the O b Zpvπw�span of
pn1, n2q is the Wach module NpT q. Since D � NpT q

πNpT q , the matrix of φ on D looks
like

P 2 �
� 1

prα �
0 1

p1�rα
�1



,

so coker p1� φq is given by detp1� P 2q � p1� p�rαqp1� pr�1α�1q. Therefore,

ordp
�
coker p1� φqq � ordppp1� p�rαqp1� pr�1α�1q�

� ordp
�ppr � α

pr
qp1� p1�rα

p1�rα
q�

� ordpp1� α1

p
q (α is a p-adic unit)

� ordpp1� p1�rappfq � p

p
q.

Finally, that h1pDqtors � H1
f pKv, T qtors � H1pKv, T qtors is identified with H0pKv, Aq

is because it’s nothing but the image H0pKv, Aq Ñ H1pKv, T q and H0pKv, V q �
0. □

4.3. Proof of the p-part of Tamagawa Number formula in rank 0. In this
section we prove the p-part of Tamagawa Number formula for the modular form
f P Snew2r pΓ0pNqq. It is based on the cyclotomic Iwasawa Main Conjectures proved
in [KY24a] and the cyclotomic control theorem Theorem 3.1.5.

Theorem 4.3.1. Let f P Snew2r pΓ0pNqq be a newform with trivial nebentypus, and
let p ¡ 2 be a prime of good ordinary reduction for f . Assume that p is an Eisenstein
prime for f , i.e., the residual representation ρf is reducible, and that 2 ¤ 2r ¤ p�1.
Assume further that the sub-representation Fpφq of ρf is either ramified at p and
even, or unramified and odd when restricted to the decomposition group Gp. If
Lpf, rq � 0, then

ordppLpf, rqΩf
q � ordpp#XNekpf{Qq � TampAf {Qqq

where Tampf{Qq �±
ℓ|N cℓpAf {Qq is the product over the bad primes ℓ of f of the

Tamagawa numbers of f .



28 MULUN YIN

Proof. From [LV23, Theorem 4.21], since Lpf, rq � 0, H1
BKpQ, Af q is finite and from

the sequence (0.3), im pAJQq b Qp{Zp � 0 and XNekpf{Qq � H1
BKpQ, Af q. In

particular, XNekpf{Qq �XBKpf{Kq �XpAf {Kqrp8s.
Let FGr P ΛQ be a generator of the characteristic ideal of H1

GrpQ,Mf q_, then
from Theorem 3.1.5, there is an equality

#pO{FGrp0qq � #XpAf {Kqrp8s �
¹

vPΣ,v�p
cvpAf {Qq.

Under the given assumptions, the cyclotomic Iwasawa Main Conjecture, namely the
equality

pFGrp0qq � pLMTT
f pχr0qq P ΛQ,

follows from Theorem 1.4.2 (see also the end of section 1.4).
On the other hand, from eq. (1.1) ,up to a p-adic unit (note that k � 2r ¤ p� 1),

LMTT
f pχr0q � p1� pr�1

αp
q2 � Lpf, rqΩf

where αp is the unit root of x2 � appfqx� p2r�1. When r ¡ 1, 1� pr�1

αp
is obviously

a unit. When r � 1, 1� 1
αp

is still a unit since αp � appfq � 1 pmod pq.
□

4.4. Proof of a higher weight p-converse theorem. In this section, we prove The-
orem C in the introduction. We will follow closely the arguments in [CGLS22,
Theorem 5.2.1]. As in the case for elliptic curves, the p-converse theorem is a
consequence of the anticyclotomic Heegner Point Iwasawa Main Conjecture ((IMC1)
in Theorem 1.3.2), an anticyclotomic control theorem Theorem 3.3.1 as well as
essentially a Kolyvagin’s theorem ([Nek92, Theorem]. See also [Vig20, Remark 5.4]).

We assume the Gillet–Soulé pairing is non-degenerate in this section.
We first recall Nekovář’s theorem.

Theorem 4.4.1. Assume p ∤ 2N . Let y0 � coresK1{KAJfK1
p∆N q P im pAJfKq be a

Heegner cycle and assume y0 is non-torsion. Then
(i) im pAJfKq bQ � F � y0,

(ii) XNekpf{Kq is finite.

A natural consequence of this is that, in the event where y0 is non-torsion, from
the sequence (0.2), H1

BKpK,Af q must be of corank 1 and im pAJfKq bQp{Zp must
be its maximal divisible subgroup. Thus there is an equality

XBKpf{Kq �XNekpf{Kq.
The version of the Gross–Zagier–Zhang–Kolyvagin–Nekovář’s theorem we will need
is the following.

Theorem 4.4.2. Let t P t0, 1u. If ords�rLpf{Q, sq � t, then

dimF pim pAJfQq bQq � corankZppH1
BKpQ, Af qq � t,

and XNekpf{Qqrp8s   8.

Proof. This is a combination of Theorem 4.1.1 and Theorem 4.4.1. The proof is
similar to that of [LV23, Theorem 4.21]. □

We now state and prove the converse theorem.
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Theorem 4.4.3. Let f P Snew2r pΓ0pNqq be a newform of weight 2r ¥ 2 with r odd
and p ∤ 2N be an Eisenstein prime of good ordinary reduction for f . Assume the
Gillet–Soulé pairing is non-degenerate and all Abel–Jacobi maps are injective. Let
t P t0, 1u. Then

corankZp
pH1

BKpQ, Af qq � tñ ords�rLpf{Q, sq � t,

and so dimF pim pAJfQq bQq � t and #XNekpf{Qqrp8s   8.

Proof. We will choose a suitable imaginary quadratic field K where we obtain the
anticyclotomic Iwasawa Main Conjectures, depending on t P t0, 1u. Let fK denote
the twist of f by K.

We first assume corankZp
pH1

BKpK,Af qq � 1. Choose an imaginary quadratic
field K such that

(a) DK   �4 is odd,
(b) every prime ℓ dividing N splits in K,
(c) p splits in K, say p � vv,
(d) LpfK{Q, sq � 0.

The existence of such K (in fact, of an infinitude of them) is ensured by [FH95, Theo-
rem B.1]. Now by Theorem 4.4.2, the last condition implies corankZp

pH1
BKpQ, AfK qq �

0 and therefore corankZp
pH1

BKpK,Af qq � 1. From Theorem 3.2.1, this implies
corankZp

pH1
FΛK

pK,Mf qqΓK q � 1. Now from Theorem 1.3.2(IMC1), pXtorsqΓK
must

be finite so pH1
FΛK

pK,Tq{ΛK � κ8qΓ must be finite as well, which implies that κ8
is non-torsion.

There is an injection H1
FΛK

pK,TqΓK
ãÑ H1

BKpK,Tf q coming from the first coho-
mology of the short exact sequence

0 Ñ T �TÝÑ T Ñ Tf Ñ 0.

It then follows that κ8 and hence κ1 has non-torsion projection in H1
BKpK,Tf q, but

by construction the projection of κ1 is nothing but
°
rasPPicpOKq AJfK1,BDPp∆BDP

a q.
By the discussion at the end of section 2.7, this also means Zhang’s cycle S2rpExq
is non-torsion. Now Theorem 4.1.1 implies ords�rLpf{K, sq � 1 (assuming non-
degeneracy of the Gillet–Soulé pairing). Since ords�rLpf{K, sq � ords�rLpf{Q, sq�
ords�rLpfK{Q, sq, it follows that ords�rLpf{Qq � 1.

The rank 0 case is completely analogous and we replace the condition (d) by
(d’) ords�rLpfK , sq � 1.

The existence of infinitely many such K follows from [FH95, Theorem B.2] and
by Theorem 4.4.2 again one has corankZp

pH1
BKpK,Af qq � 1. By passing to Zhang’s

cycle and applying Theorem 4.1.1, one again gets ords�rLpf{K, sq � 1 which implies
Lpf, rq � 0. □

4.5. Some discussion of the p-part of Tamagawa Number formula in rank
1. Finally, we talk about some ingredients that might potentially yield a proof of
the p-part of Tamagawa Number formula in rank 1.

Step 0: We begin by recalling that, when the analytic rank is 1, there is an
identification XNekpf{Kq �XBKpf{Kq (see remarks after Theorem 4.4.1). When
Xpf{Kqrp8s   8, they are also identified with Xpf{Kqrp8s.
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Step 1: As in the proof of Theorem 4.3.1 in rank 1 case, we choose a K
satisfying Assumption 1.2.1 such that LpfK , rq � 0. Thus ords�rLpf{Kq � 1, and
by Theorem 4.4.2 we have #Xpf{Kq   8.

Step 2: From Theorem 1.3.2(IMC2), there is a p-adic unit u P pZur
p q� for which

fΣ
acp0q � u � LBDP

f p0q,
where fΣ

ac is a generator of CharΛK
pXΣ

acpMf qq � CharΛK
pXf q.

Step 3: From Theorem 3.3.1, taking ω � ωf , there is an equality

#O{fΣ
acp0q �

#XpK,Af q � CΣpAf q
p#H0pK,Af qq2

�

p# pOL : OL � logωf
plocv0Cqq

pOL : logωf
pH1

f pKv0 , Tf q{torsqqpH1
f pK,Tf q{tors : OL � Cq q

2.

From Theorem 4.1.3, there is an equality
LBDP
f p0q � logωf

plocvC1q2{p�4Dqr�1 � p1� p�rappfq � p�1q2,
where C1 is the classical Heegner point over Γ1pNq as in Theorem 4.1.3.

From Theorem 4.2.1, taking ω � ωf , there is an equality

ordppOL : logωpH1
f pKv, T q{torsqq � ordp

� #H0pKw, Af q
1� p�rappfq � p�1

�
.

One would naturally hope to take C � C1. Then one would get (up to a p-adic
unit)

#XpK,Af q � Tampf{Kq
p#H0pK,Af qq2

� rH1
f pK,Tf q{tors : OL � C1s2.

However, to understand the term on the right, a Gross–Zagier formula for C1 is
needed.

On the other hand, if we choose CN � coresK1{KAJfK1
p∆N q � coresK1{KAJfK1

pΓ̃q
corresponding to a classical Heegner cycle over ΓpNq, then Theorem 4.1.1 provides
a desired description of rH1

f pK,Tf q{tors : OL � CN s. However, it seems difficult
to compare rH1

f pK,Tf q{tors : OL � C1s to rH1
f pK,Tf q{tors : OL � CN s. One could

again appeal to Proposition 2.7.2 to relate the indices of the Heegner points in the
Abel–Jacobi images. However, a direct comparison of im pAJfK1,1q and im pAJfK1

q
seems not easy.
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