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Abstract. Let E{Q be an elliptic curve and p ¥ 3 be a prime. We prove the
p-converse theorems for elliptic curves of potentially good ordinary reduction at
Eisenstein primes (i.e., such that the residual representation Erps is reducible)
when the p-Selmer rank is 0 or 1. The key step is to obtain the anticyclotomic
Iwasawa Main Conjectures for an auxiliary imaginary quadratic field K where
E does not have CM similar to those in [CGLS22] and descent to Q.

As an application we get improved proportions for the number of elliptic
curves in quadratic twist families having rank 0 or 1.
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Introduction

0.1. Statement of the main results. Let E{Q be an elliptic curve. The Birch–
Swinnerton-Dyer Conjecture predicts that ords�1LpE, sq, the order of vanishing of
the L-function of E at s � 1, should equal rkZEpQq, the rank of its Mordell–Weil
group. The celebrated theorem of Gross–Zagier and Kolyvagin states that for
r P t0, 1u,

ords�1LpE, sq � r ñ rkZEpQq � r.

In fact, they proved a stronger result. Consider the following conditions:
(i) ords�1LpE, sq � r;
(ii) rkZEpQq � r and #XpE{Qq   8.

What they proved is that (i)ñ(ii) if r P t0, 1u, where XpE{Qq is the Tate–
Shafarevich group of E, which is conjectured to be always finite.

Over the past few years, much progress has been made towards a converse to the
above theorem. If p is any prime, one can define the p8-Selmer groups associated
to E, denoted by Selp8pE{Qq. Then there is a third condition:

(iii) corankZpSelp8pE{Qq � r.
(iii) is naturally a consequence of (ii) because the groups fit into an exact sequence

0 Ñ EpQq bZ Qp{Zp Ñ Selp8pE{Qq ÑXpE{Qqrp8s Ñ 0.
The implication (iii)ñ(i) is usually called the p-converse to Gross–Zagier–Kolyvagin’s
theorem, which can be formulated in the following way.

Conjecture A. Let E be an elliptic curve defined over Q and let p be a prime. Let
r P Z. Then

corankZpSelp8pE{Qq � r ñ ords�1LpE, sq � r.

When r P t0, 1u, many important cases of the p-converse theorems have been
essentially obtained, most of which only allow p to be a prime of ordinary reduction
or good supersingular reduction for E. For example, when Erps is reducible as a
GalpQ{Qq-module (the Eisenstein case) and does not have the trivial representation
as a GalpQp{Qpq-subrepresentation, the good ordinary case is treated in [CGLS22].
The restriction on Erps has later been removed and generalized by the authors
in [KY24] to include the multiplicative case, while E cannot have supersingular
reduction in the Eisenstein case.

Our first result is the anticyclotomic Iwasawa Main Conjectures for elliptic curves
at potentially good ordinary Eisenstein primes p ¥ 3. In fact, we formulate and
prove things in terms of a bit more general ‘Heegner pairs’ See Theorem 3.5.1.
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Our main results are the following:

Theorem B. Let E be an elliptic curve defined over Q and let p ¡ 2 be a prime of
potentially good ordinary reduction for E. Assume Erps is reducible. Let r P t0, 1u.
Then

corankZpSelp8pE{Qq � r ñ ords�1LpE, sq � r,

and so rkZEpQq � r and #XpE{Qq   8.

0.2. Method of proof and outline of the paper. Let E{Q be an elliptic curve
of analytic rank 0 or 1 and K{Q be a Heegner field for E{Q, i.e., such that all
p | NE split in K and ranpE{Kq � 1. A p-converse theorem for an elliptic curve E
is naturally a consequence of a ‘Heegner Point type’ Main Conjecture of Iwasawa
theory. More precisely, let Selp8pE{Kq and SppE{Kq be the Selmer groups fitting
into the exact sequences

0 Ñ EpKq bQp{Zp Ñ Selp8pE{Kq ÑXp8 Ñ 0,
0 Ñ EpKq b Zp Ñ SppE{Kq Ñ limÐÝ

n

Xpn Ñ 0.

Then it is predicted that Selp8pE{Kq � Qp{Zp`M `M for some finite Zp-module
M such that

lengthZppMq � lengthZppSppE{Kq{Zp � κ1q � vppTampE{Kqq,
where κ1 P SppE{Kq is an element of a ‘Kolyvagin system’ coming from Heegner
points and TampE{Kq is the product of Tamagawa numbers for E over K. The
Kolyvagin system argument in [How04] gives a partial answer to the above conjecture
in many cases. Namely, one obtains the desired structure theorem, while being able
to show
(0.1) lengthZppMq ¤ lengthZppSppE{Kq{Zp � κ1q.
Unfortunately, to obtain a p-converse theorem, one would ask for an opposite
inequality, which often requires new ideas in different cases.

One could also consider a more general ‘Λ-version’ (in fact, it is necessary to do so)
of the above conjecture for Λ � ZpJT K, the anticyclotomic Iwasawa algebra. Namely,
if K8{K is the anticyclotomic Zp-extension of K with subfields tKn � K8unPN with
rKn : Ks � pn, one could consider the ‘limiting Selmer groups’ Selp8pE{K8q �
limÝÑ Selp8pE{Knq and SppE{K8q � limÐÝSppE{Knq. They will be closely related
to certain (dual) Selmer groups denoted by X � HompH1

FΛ
pK,Mf q,Qp{Zpq and

H1
FΛ
pK,Tq respectively, and one expects that X should be pseudo-isomorphic to

Λ`M `M where M is a torsion Λ-module. Moreover, it is conjectured that
charΛpMq � charΛpH1

FΛ
pK,Tq{Λ � κHeeg

1 q,
where charΛ denotes the characteristic Λ-ideal and κHeeg

1 is again an element of a
Kolyvagin system coming from Heegner points. Then in the good ordinary case,
the Kolyvagin system argument in [How04] also proves the structure theorem and
shows that charΛpMq � charΛpH1

FΛ
pK,Tq{Λ � κHeeg

1 q, a ‘one-side divisibility’ of the
Heegner Point Main Conjecture. It was first observed in [CGLS22] that in the
Eisenstein case, one could obtain the reversed divisibility by passing to an equivalent
form of the Main Conjecture and comparing the so-called ‘Iwasawa invariants’.

More precisely, in the good ordinary case, there are three steps in establishing
the equalities in the Heegner Point Main Conjectures:
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I Proving one divisibility using a Kolyvagin system argument;
II Constructing a so-called Perrin-Riou’s regulator map or the big logarithm map

that maps a Heegner class to the Bertolini–Darmon–Prasana p-adic L-function,
establishing the equivalence between the Heegner Point Main Conjecture to the
Greenberg’s Main Conjecture involving Greenberg’s Selmer groups and p-adic
L-functions. This relation is sometimes referred to as the explicit reciprocity
law;

III In the setting of Greenberg’s Main Conjecture, comparing the Iwasawa invariants
of the algebraic side (for Selmer groups) and the analytic side (for p-adic L-
functions). An equality of the invariants will turn one divisibility coming from
the corresponding one in the Heegner Point Main Conjecture into an equality.
This in turn implies the equality in Heegner Point Main Conjecture.

Step III above heavily relies on the Eisenstein assumption. By the reducibility of
Erps, there is a short exact sequence

(0.2) 0 Ñ Fppφq Ñ Erps Ñ Fppψq Ñ 0

for some characters φ and ψ. One can relate the Iwasawa invariants of f to those of φ
and ψ on both the algebraic side (in terms of Selmer groups) and the analytic side (in
term of p-adic L-functions). Now the Iwasawa Main Conjectures ([Rub91]&[CW78].
Also [dS87]) for the characters bridge the algebraic side and the analytic side. The
Heegner Point Main Conjecture, together with Mazur’s control theorem, typically
yields the p-converse theorem.

In the multiplicative reduction case, one proves the Greenberg’s Main Conjecture
using congruence in a Hida family ([Ski14]). If f is a weight 2 newform with p dividing
its level, there is a Hida family tfku of higher weight newforms of good reduction
‘lying above’ f . By a limiting process, the Greenberg’s Main Conjectures for fk’s
imply the Greenberg’s Main Conjecture for f . One then shows the equivalence
between the Greenberg’s Main Conjecture and the Heegner Point Main Conjecture by
studying the exceptional behavior of the big logarithm map for f ([Cas15], [KY24]).

In this paper, we extend the Kolyvagin system argument to some new cases in the
additive reduction setting, and show that, with carefully defined Selmer groups, one
could also formulate and prove Heegner Point Main Conjectures as well as control
theorems that would suffice to give a p-converse theorem. In doing so, one needs to
distinguish between three cases (see section 1 for a quick review of types of additive
reduction):

i the potentially good ordinary case;
ii the potentially multiplicative case;
iii the potentially supersingular case.

The first two cases are both considered as potentially ordinary and can be studied
together. In fact, if f is a newform of weight 2 associated to an elliptic curve of
potentially ordinary reduction at p, then it is a twist of an p-ordinary newform with
nebentypus, i.e., f � f̃ b ε for some p-ordinary f̃ and a finite order character ε, and
we will work with a Heegner pair pf̃ , χεq that is equivalent to f .

In the potentially good ordinary case, we modify the arguments in [CGLS22], or
rather, a generalization in [KY24], to obtain an Iwasawa Main Conjecture over an
auxiliary imaginary quadratic field K that is not the CM field of E (if E does not
have complex multiplication, we could choose any K satisfying certain hypotheses).
Roughly speaking, if f̃ has good ordinary reduction, then one simply considers
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everything twisted by ε, and the arguments are not very different from the good
ordinary case without twists.

In the potentially multiplicative case, one can hope to work with a twisted Hida
family tf̃k b εku lying above f , where tf̃ku is a Hida family lying above f̃ . Then
f̃kb εk are thus automatically twists of good ordinary forms, which makes reasoning
analogous to the ordinary case possible. However, due to the lack of tools of studying
Perrin-Riou’s regulator map, we will not consider the potentially multiplicative case
in this work. Nonetheless, many of our results allow p in the level of the ordinary
modular forms.

A key step in our arguments is to find a suitable finite extension of K where
E obtains good reduction, and show that climbing up the fields only introduce
controllable errors.

The paper is organized as follows:
In section 1, we review the reduction types of an elliptic curve, with a focus on

different cases of additive reduction. We also discuss reduction types of modular
forms for our application.

In section 2, we introduce Iwasawa theory, which will be the main tool to prove
the main results. We also include a structural but comprehensive proof of the
p-converse theorem in the good ordinary case.

In section 3, we study Iwasawa theory in the potentially good ordinary cases,
where we formulate and prove the Heegner Point Main Conjectures, yielding the
proofs of the p-converse theorems.

0.3. Relation to previous works. On one hand, p-converse theorems are conse-
quences of Iwasawa Main Conjectures. When the analytic, hence algebraic rank of
E{Q is 0 or 1, the Iwasawa Main Conjectures have been studied by several authors
in good ordinary case ([CGLS22] for (residually) reducible, [SU14] for irreducible)
and bad multiplicative case ([KY24] for reducible, [Ski14] for irreducible), whether
or not a p-converse theorem is explicit.

In this work, we prove the p-converse theorems for elliptic curves of potentially
good ordinary reduction at additive odd primes in the residually reducible case.

On the other hand, p-converse theorems see interesting applications in arithmetic
statistics, allowing the distribution of certain Selmer ranks to control the ranks of
the Mordell–Weil groups.

0.4. Eisenstein primes. Let f be the weight 2 newform associated to E. In the
residually reducible setting, one could take the advantage of the congruence of f to
an Eisenstein series G (by the results of [Kri16]), and obtain a congruence of the
p-adic L-functions of f (constructed in [BDP13]) to that of G. These two p-adic
L-functions Lf , LG are carefully studied in [CGLS22]. The fact that we could
compare Lf to LG using congruence without the need to compare interpolation
properties is what allows us to finish the argument in the bad reduction case. In
the non-Eisenstein case, however, one seems unable to argue without comparing
interpolation properties directly, which make the situations much more mysterious.

0.5. Potentially multiplicative reduction. Recall that our proof of the Heegner
Point Main Conjectures is divided into three steps:


 I. Proving one-side divisibility;

 II. Establishing the explicit reciprocity law;

 III. Comparing Iwasawa invariants
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Steps I and III can be easily extended to the potentially multiplicative case. However,
in proving step II we need to use the results from [JLZ21], which do no work any
more. Indeed, they need to assume p is split in the chosen imaginary quadratic
field K, while if f � f̃ b ε is a potentially multiplicative form with εf � 1 � εf̃ ,
ε must be a quadratic character such that p | condpεq. Such a character exactly
corresponds to imaginary quadratic fields where p does not split.

It is mentioned in [JLZ21] that a analog of their results which allows non-split p
might be achievable by possible extensions of the work in [AI19]. If so, p-converse
theorems for potentially multiplicative reduction should also be within reach, which
we hope to examine in future work. For future use, some of our results also cover
potentially multiplicative case.

0.6. Higher weight modular forms. The goal of this paper is to prove the p-
converse theorems for elliptic curves at primes of potentially good ordinary reduction.
However, in the potential use of Hida theory to treat the potentially multiplicative
case in weight 2, it is natural to study twists of good ordinary forms of higher
weights (corresponding to ‘Heegner pairs’). It should be mentioned that the ‘twists’
will in general no longer be classical modular forms since these characters will have
infinite order. But we can think of these twists as self-dual twist on the level of
Galois representations. Some of our arguments still work for general Heegner pairs.

On the other hand, a modular form of weight greater than 2 of multiplicative
reduction is no longer ordinary. Therefore we will not consider those situations.

0.7. Applications. We would get better proportions of elliptic curves in certain
families that satisfy the BSD rank conjecture and provide new evidence towards
Goldfeld’s Conjecture. See Theorem 3.8.1.

0.8. Conventions. For any intermediate field L contained in the algebraic closure
Q̄ of Q, we write GL for its absolute Galois group GalpQ̄{Lq. When we say A
and B are pseudo-isomorphic, we mean there is a pseudo-isomorphism from A
to B. Sometimes we need to work with Zp-extensions of K and L. For K8 the
anticyclotomic extension of K, we set L8 :� LK8.

0.9. Acknowledgements. We thank MY’s advisor Francesc Castella for his guid-
ance throughout this project. This work is part of MY’s forthcoming Ph.D. thesis.

1. Primes of additive reduction

In this section we review some fundamental results on the reduction types of
elliptic curves and modular forms at a prime p.

1.1. Reduction types of elliptic curves. Let E be an elliptic curve defined over
Q and Ẽ be its reduction modulo p. If Ẽ is non-singular, we say that E has good
reduction at p, otherwise E has bad reduction at p. Suppose first that E has good
reduction at p. Let ap � p � 1 � #ẼpFpq. We say that E has (good) ordinary
reduction at p if p ∤ ap, and E is said to have (good) supersingular reduction at p
otherwise. One knows that if E has supersingular reduction at p, then Erps must
be an irreducible GQ-module.

Now suppose E has bad reduction. Then Ẽ would have a unique singular point
P . If P is nodal, we say E has (bad) multiplicative reduction at p. If p is cuspidal,
we say E has (bad) additive reduction at p. In the multiplicative case, we have
ap � �1, so multiplicative reduction is also considered ordinary.
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The L-function of E is formally defined as an Euler product of local factors at
every prime:

LpE, sq�
¹

p good
p1� app

�s � p1�2sq�1 �
¹
p bad

p1� app
�sq�1

where ap P t0,�1u depending on the reduction type modulo bad primes p | N .
We also defined the conductor NE{Q of E{Q to be

NE{Q �
¹
p

pfp ,

where

fp �

$'''&
'''%

0 E has good reduction at p
1 E has multiplicative reduction at p
2 E has additive reduction at p ¡ 3
2� δp E has additive reduction at p � 2, 3,

where δp ¥ 0 is a technical constant.

1.2. Reduction types of modular forms. By modularity theorem, every elliptic
curve is associated with a weight 2 newform fpzq � °n anq

n P S2pΓ0pNf qqnew where
q � e2πiz in the sense that their L functions agree:

LpE, sq � Lpf, sq�
¸
n

ann
�s.

The conductor NE of the elliptic curve agrees with the level Nf of the newform.
We could then decompose Nf into a product NmultNadd such that ℓ | Nmult implies
ℓ is of multiplicative reduction and ℓ | Nadd implies ℓ is of additive reduction. In
general, if we have a modular form f P SkpΓ0pNqqnew, we say p is a good prime for
f if p ∤ N , that p is a multiplicative prime for f if p}N and that p is an additive
prime for f if p2 | N .

Following [Kat04], we can also talk about potential good reduction for a modular
form.

Definition 1.2.1 (Remark 12.7 in [Kat04]). There exists a finite extension K of Qp

having the following properties. For any finite place v of F which does not lie over
p, the representation of GalpK{Kq on VFv pfq is unramified. For any finite place v
of F which lies over p, the representation of GalpK{Kq on VFv pfq is crystalline.

1.3. Primes of additive reduction. When E{Q has additive reduction at a prime
p and is viewed as an elliptic curve defined over Qp, one could enlarge the field
so that E can gain good reduction or multiplicative reduction over some finite
extension of Qp. For this reason, additive reduction as sometimes referred to as
unstable reduction. On the other hand, good reduction and multiplicative reduction
do not change when extending the ground field, so they are both called semistable
reduction.

When E has complex multiplication, it has potentially good reduction everywhere.

1.4. Field of semistable reduction. Most of the time, we do not need to make a
specific choice of an extension Lu{Qp where E gains semistable reduction. However,
it is convenient to record what can be said about such extensions. We have the
following result from [Con].
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Proposition 1.4.1 (Proposition 6.5 in [Con]). Pick N ¥ 3 not divisible by p.
Then E acquires semistable reduction at all places of the finite Galois splitting field
QpErN sq{Qq of ArN s.
Lemma 1.4.2. There is a prime q ¥ 3 of good reduction for E such that E
acquires good reduction over QppErqsq{Qp and such that this field extension has
degree coprime to p.

Proof. If p ¡ 3, one can choose q � 3 and GalpQpErqsq{Qq is a subgroup of GL2pF3q,
which has order 48. In particular, one can assume there is a finite extension L{Q
with a place u | p so that E gains semistable reduction over Lu with rLu : Qps being
coprime to p.

When p � 3, then there is a prime 3   q � 1 pmod 3q of good reduction for
E such that E acquires good reduction over Q3pErqsq{Q3. Note that this is a
solvable extension with Galois group G isomorphic to a subgroup of GL2pFqq.
Hence by [KS23, Theorem 2.14] and since GL2pFqq is not solvable for q ¥ 5, it must
be
(a) contained in a Borel subgroup,
(b) contained in a normalizer of a (split or non-split) Cartan subgroup, or
(c) exceptional, i.e., having projective image in S4.
We prove that we can find a prime q as above such that 3 ∤ #G.
(a) In this case 3 ∤ #G � pq � 1q2 � q because of our assumption on q.
(b) The normalizers of a Cartan have order dividing 2pq� 1q in the split case, which

is coprime to 3 if q � 1 pmod 3q, and 2pq� 1q in the non-split case. But if q ¡ 2
is a prime of good ordinary reduction, then according to the proof of [KS23,
Lemma 2.32] the image of Galois ρ3pGQq

q contains a non-trivial semisimple
split element, so we are not in the normalizer of a non-split Cartan case. But
there is such a q � 1 pmod 3q: If E is not CM, the density of ordinary primes
is 1, so we are good. If E has CM by an imaginary quadratic field K, then we
just need K � Qp?�3q. But if K � Qp?�3q, E is isogenous to y2 � x3 � 1,
which has potentially supersingular reduction at 3.

(c) This cannot happen for q ¡ 5 a prime of good reduction according to [KS23,
Proposition 2.45]. □

2. Iwasawa Theory

In this section, we discuss some important tools from Iwasawa theory. Let E be
an elliptic curve over Q and f P S2pΓ0pNqqnew be the weight 2 newform associated
to E. Let p be a prime number. Throughout the paper, K denotes an imaginary
quadratic field satisfying the following hypotheses:

Assumption 2.0.1. (i) p � vv̄ is split in K;
(ii) K satisfy the Heegner hypothesis, i.e., every prime ℓ | N is split in K;
(iii) the discriminant DK of K is   �3 and odd.

Let K8{K be the anticyclotomic Zp-extension of K and denote by Γ its Galois
group Γ � GalpK8{Kq � Zp. For each n P N, let Kn � K8 be the subfield with
rKn : Ks � pn. The Iwasawa algebra Λ � ZpJΓK can be identified with a formal
power series ring ZpJT K be sending a topological generator γ P Γ to 1� T .
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For a torsion Λ-module M , one knows that there is a pseudo-isomorphism (i.e., a
Λ-morphism with finite kernel and cokernel)

M �
sà
i�1

Λ{pfkii q `
tà

j�1
Λ{pplj q

where each fi is an irreducible distinguished polynomial with fi � T degpfiq pmod pq.
We define the λ, µ-invariants of M to be

λpMq�
ş

i�1
ki degpfiq,

µpMq�
ţ

j�1
lj .

The characteristic ideal charΛpMq of M is the Λ-ideal generated by the characteristic
polynomial

fΛpMq� pµpMq
s¹
i�1

fkii .

Example 2.0.2. If M1,M2 are two Λ-torsion modules with charΛpM1q � charΛpM2q,
then charΛpM1q � charΛpM2q if and only if λpM1q � λpM2q and µpM1q � µpM2q.
2.1. Selmer structures and Kolyvagin systems. To state the Iwasawa Main
Conjectures from which our p-converse theorem follows, we first need to introduce
suitable Selmer groups. They generalize the usual Selmer groups Selp8pE{Kq and
SppE{Kq in the introduction. The following discussions are taken from [CGLS22,
section 3.1].

2.1.1. Selmer structures. Let pR,mq be a complete Noetherian local ring with field
of fractions of characteristic 0 and with finite residue field of characteristic p, and let
M be a topological RrGKs-module such that the GK -action is unramified outside a
finite set of primes. A Selmer structure F on M is finite set Σ � ΣpFq of places of
K containing 8, the primes above p and the places where M is ramified, together
with a choice of R-submodules (called local conditions) H1

F pKw,Mq � H1pKw,Mq
for every w P Σ. The associated Selmer group is then defined as

H1
F pK,Mq� ker

!
H1pKΣ{K,Mq Ñ

¹
wPΣ

H1pKw,Mq
H1

F pKw,Mq
)
.

where KΣ is the maximal extension of K unramified outside Σ.
Some local conditions we will see frequently are the following:


 The strict (resp. relaxed) local condition: H1
strpKw,Mq� 0 (resp. H1

relpKw,Mq�
H1pKw,Mq);


 The unramified local condition: H1
nrpKw,Mq� kerpH1pKw,Mq Ñ H1pKnr

w ,Mqq
where Knr

w is the maximal unramified extension of Kw.
When M is unramified at a prime w ∤ p, we also called the unramified local

condition the finite local condition H1
f pKw,Mq � H1

nrpKw,Mq. The singular
quotient is defined by the exact sequence

0 Ñ H1
f pKw,Mq Ñ H1pKw,Mq Ñ H1

spKw,Mq Ñ 0.
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Let L0 � L0pMq be the set of degree 2 rational primes (that is, inert in K) of
ℓ � p at which M is ramified. For Krℓs the ring class field of conductor ℓ, we define
the transverse local condition at λ | ℓ P L0 by

H1
trpKλ,Mq� kerpH1pKrℓsλ,Mq Ñ H1pKλ1 ,Mqq

where Krℓsλ1 is the completion of Krℓs at any prime λ above ℓ.
Lastly, given a submodule N (resp. quotient) of M and a local condition F on

M , we define the propagated local condition on N , still denoted by F , to be the
preimage (resp. image) of H1

F pKv,Mq under the natural map

H1pKv, Nq Ñ H1pKv,Mq
(resp. H1pKv,Mq Ñ H1pKv, Nq).

As in [How04], we call a Selmer triple pM,F ,L q the data of a Selmer structure F
on M and a subset L � L0 with L XΣpFq � H. Given a Selmer triple pM,F ,L q
and given pairwise coprime integers a, b, c divisible only by primes in L0, we define
the modified Selmer group H1

Fa
b
pcqpK,Mq by choosing ΣpFa

b pcqq � ΣpFq Y tw | abcu
and the local conditions

H1
Fa
b
pcqpKλ,Mq �

$'''&
'''%

H1pKλ,Mq if λ | a
0 if λ | b
H1

trpKλ,Mq if λ | c
H1

F pKλ,Mq if λ ∤ abc

Definition 2.1.1. Let QuotpMq denote the quotient category of M whose objects
are quotients M{IM of M by ideals I of R and whose morphisms from M{IM to
M{I 1M are the maps induced by scalar multiplication r P R with rI � I 1.

A local condition functorial over QuotpMq is called Cartesian if for any injective
morphism N ÑM the local condition F on N is the same as the local condition
obtained by propagation from M to N .

Remark 2.1.2. By [MR04, Lemma 1.1.9], the unramified local condition is Carte-
sian.

2.1.2. Kolyvagin systems. From now on let T be a compact R-module with a
continuous linear GK-action that is unramified outside a finite set of primes. For
each λ | ℓ P L0 � L0pT q, let Iℓ be the smallest ideal containing ℓ � 1 for which
the Frobenius element Frobλ P GKλ acts trivially on T {IℓT . By class field theory,
λ splits completely in the Hilbert class field of K, and the p-Sylow subgroups of
Gℓ � GalpKrℓs{Kr1sq and k�λ {F�

ℓ are identified via the Artin symbol, where kλ
is the residue field of λ. Hence by [MR04, Lemma 1.2.1], there is a finite-singular
comparison isomorphism

φfs
λ � H1

f pKλ, T {IℓT q � T {IℓT � H1
spKλ, T {IℓT q bGℓ

Given a subset L � L0, let N denote the set of square-free products of primes
ℓ P L , and for each n P N , define

In �
¸
ℓ|n

Iℓ � R, Gn �
â
ℓ|n

Gℓ,

with the convention that 1 P N , I1 � 0 and G1 � Z.



p-CONVERSE THEOREMS AT POTENTIALLY GOOD ORDINARY EISENSTEIN PRIMES 11

Definition 2.1.3. A Kolyvagin system for a Selmer triple pT,F ,L q is a collection
of classes

κ� tκn P H1
FpnqpK,T {InT q bGnunPN

such that pφfs
λ b 1qplocλpκnqq � locλpκnℓq for all nℓ P N .

We denote by KSpT,F ,L q the R-module of Kolyvagin systems for pT,F ,L q.

2.2. The Iwasawa Main Conjectures. In this section we introduce some Iwasawa
Main Conjectures that will be needed in the proof of the p-converse theorems. We
also discuss some strategies in proving known cases and how they could be adapted
to new cases.

2.2.1. The Heegner Point Main Conjecture. When E has good ordinary reduction
at a prime p, several Iwasawa Main Conjectures have been formulated and proved
in e.g. [CGLS22]. The one that serves as a key ingredient in the proof of p-converse
theorems is the following Heegner Point Main Conjecture first formulated by Perrin-
Riou [PR87].

Fix a modular parametrization

π : X0pNq Ñ E.

Then the Kummer images of Heegner points on X0pNq over ring class fields of K of
p-power conductor give rise to a class κHeeg P S � limÐÝSppE{Knq. The group S is
naturally a Λ-module and the class κHeeg is known to be non-Λ-torsion by results of
Cornut and Vatsal [Cor02], [Vat03]. We put X � HomZpplimÝÑSelp8pE{Knq,Qp{Zpq.
Conjecture 2.2.1 (The Heegner Point Main Conjecture). Let E{Q be an elliptic
curve and p ¡ 2 be a prime of good ordinary reduction, and let K be an imaginary
quadratic field satisfying the Heegner hypothesis. Then both S and X have Λ-rank
one, and

charΛpXtorsq � charΛpS{Λ � κHeegq2,
where Xtors denote the Λ-torsion submodule of X.

Under Assumption 2.0.1, the above conjecture is now a theorem by combined
results of [CGLS22], [CGS23] and [KY24] in the Eisenstein case. The proof uses
a variation of Kolyvagin system arguments systematically studied in [How04] (for
the ‘�’-divisibility) and a comparison of Iwasawa invariants on both sides to turn
the divisibility into an equality. To perform the comparison, one needs to go to a
different yet equivalent type of Iwasawa Main Conjecture, the Greenberg’s Iwasawa
Main Conjecture.

2.2.2. The Greenberg’s Main Conjecture. Let SE be the modified Selmer group
(called the (Greenberg’s) unramified Selmer group) obtained from Selp8pE{K8q�
limÝÑSelp8pE{Knq by relaxing (resp. imposing triviality) at places above v (resp. v).
Let XE � HomZppSE ,Qp{Zpq be its Pontryagin dual. From the work of Bertolini–
Darmon–Prasanna, there is a p-adic L-function LE � Lf P Λur interpolating the
central values of the L-function of f{K twisted by certain characters of Γ of infinite
order. Here Λnr

� Λb̂ZpZnr
p where Znr

p is the completion of the ring of integers of
the maximal unramified extension of Qp.
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Conjecture 2.2.2 (Greenberg’s Iwasawa Main Conjecture). Let E{Q be an elliptic
curve and p ¡ 2 a prime of good ordinary reduction for E. Let K be an imaginary
quadratic field satisfying the Heegner hypothesis where p splits. Then XE is Λ-torsion,
and

charΛpXEqΛnr � pLEq
as ideals in Λnr.

As is already observed in [Cas17, Appendix A] (see also [BCK21, Theorem 5.2]),
in the good ordinary setting, the Greenberg’s Main Conjecture is equivalent to
the Heegner Point Main Conjecture, and is therefore also a theorem now by the
results of the aforementioned authors in the Eisenstein case. The proof uses an
explicit congruence of f to a certain Eisenstein series G and compares the algebraic
side (the Selmer groups for f and those for the two characters appearing in the
semisimplification of ρf ) and the analytic side (the interpolation properties of the
p-adic L-function of G (hence that of f) to those of the same characters).

2.3. Prototype: Iwasawa Main Conjectures with good ordinary reduction.
In this subsection we introduce the ingredients that go into the proof of Theorem 2.2.1
and Theorem 2.2.2 in [CGLS22] and subsequent papers. We assume that E is an
elliptic curve and f is a weight 2 newform associated to E.

We begin with a proof of one divisibility using Kolyvagin system argument
systematically developed in [How04] (modified in [CGLS22] in the Eisenstein case).
Recall the notations from section 2.1.2. We start with stating some hypotheses that
the Selmer triples pT,F ,L q we will consider shall satisfy.

(H.0) T is a free R-module of rank 2.
(H.1) T {mT is reducible with H0pK,T {mT q � 0.
(H.2) For every v P ΣpFq the local condition F at v is Cartesian.
(H.3) There is a perfect, symmetric R-bilinear pairing

p�, �q : T � T Ñ Rp1q
which satisfies psσ, tτστ�1q � ps, tqσ for every s, t P T and σ P GK . Here τ
is a fixed complex conjugation. We assume that the local condition F is
its own exact orthogonal complement under the induced local pairing

x�, �yv : H1pKv, T q �H1pKvτ , T q Ñ R

for every place v of K.
The Selmer triple of particular interest is pTα,Ford,LEq, where


 α : Γ Ñ R� is a character with values in the ring of integers of a finite
extension Φ{Qp and Rpαq is the free R-module of rank 1 on which GK acts
via the projection GK ãÑ Γ composed with α;


 Tα � TpE bZp Rpαq admits a GK-action given by ρα � ρE b α where
ρE : GQ Ñ AutZppTpEq gives the GQ-action on the Tate module of E;


 Ford is the ordinary Selmer structure on Vα � Tα b Φ defined with
ΣpFordq � tw | pNu and

H1
Ford

pKw, Vαq�
#

im pH1pKw,Fil�wpVαqq Ñ H1pKw, Vαqq if w | p;
H1

urpKw, Vαq else,

where Fil�wpTpEq � kertTpE Ñ TpẼu is the kernel of reduction at w and
Fil�wpTαq� Fil�wpTpEq bRpαq, Fil�wpVαq� Fil�wpTαq b Φ.
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Let Ford also denote the Selmer structure on Tα and Aα � Tα bΦ{R �
Vα{Tα by propagating H1

Ford
pKw, Vαq under the maps induced by the exact

sequence
0 Ñ Tα Ñ Vα Ñ Aα Ñ 0;


 Let LE � tℓ P L0pTpEq : aℓ � ℓ � 1 � 0(mod pqu, where aℓ � ℓ � 1 �
|ẼpFℓq|, and N � N pLEq.

This Selmer triple satisfies the hypotheses pH.0q to pH.4q as in [CGLS22], from
which they deduced the following important intermediate result using a Kolyvagin
system argument.
Theorem 2.3.1 (Theorem 3.2.1 in [CGLS22]). Assume EpKqrps � 0. Suppose
α � 1 and there is a Kolyvagin system κα � tκα,nu P KSpTα,Ford,LEq with
κα,1 � 0. Then H1

Ford
pK,Tαq has rank one, and there is a finite R module Mα such

that
H1

Ford
pK,Aαq � pΦ{Rq `Mα `Mα

with
lengthRpMαq ¤ lengthRpH1

Ford
pK,Tαq{R � κα,1q � Eα

for some constant Eα P Z¥0 depending only on Cα, TpE, and rkZppRq.

Here Cα �

#
vppαpγq � α�1pγqq α � α�1,

0 α � α�1,
where vp is the p-adic valuation

normalized so that vpppq � 1 and γ P Γ is a topological generator.
This partial result is an analogue of (0.1) with an ‘error term’. As is explained

in [CGLS22], this error term is needed to avoid the use of the classical ‘big image’ as-
sumption (that is, ρE |GK : GK Ñ EndZppTpEq is surjective, which is automatically
satisfied in the residually irreducible setting).

To obtain a reversed divisibility using tools from Iwasawa theory, one needs to
consider everything ‘Λ-adically’. Consider the Λ-modules

ME � pTpEq bZp Λ_ and T �M_
E p1q � pTpEq bZp Λ

where the GK -action on Λ_ is given by thee inverse Ψ�1 of the tautological character
Ψ : GK ↠ Γ ãÑ Λ�.

For w a prime above p, put
Fil�wpMEq� Fil�wpTpEq bZp Λ_ and Fil�wpTq� Fil�wpTpEq bZp Λ.

Define the ordinary Selmer structure FΛ on ME and T by

H1
FΛ
pKw,MEq�

#
im pH1pKw,Fil�wpMEqq Ñ H1pKw,MEqq if w | p,
0 else,

and

H1
FΛ
pKw,Tq�

#
im pH1pKw,Fil�wpTqq Ñ H1pKw,Tqq if w | p,
0 else.

Denote by
X � H1

FΛ
pK,MEq_ � HomctspH1

FΛ
pK,MEq,Qp{Zpq

the Pontryagin dual of the associated Selmer group H1
FΛ
pK,MEq. Also recall the

LE defined earlier.
The following theorem, first obtained in [CGLS22, Theorem 3.4.2] by specializing

at all height one primes of Λ except at p and P0 � pγ � 1q, is later modified
in [CGS23, Theorem 6.5.1] to hold without the need to invert any prime.
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Theorem 2.3.2 (See Theorem 3.0.2 in [KY24].). Suppose there is a Kolyvagin
system κ P KSpT,FΛ,LEq with κ1 � 0. Then H1

FΛ
pK,Tq has Λ-rank one, and

there is a finitely generated torsion Λ-module M such that
(i) X � Λ`M `M,

(ii) charΛpMq divides charΛpH1
FΛ
pK,Tq{Λκ1q.

Now using the Heegner point Kolyvagin system constructed in [CGLS22, Theorem
4.1.1], one obtains a one-side divisibility of the Heegner Point Main Conjecture
under mild hypothesis.

Theorem 2.3.3. Assume EpKqrps � 0. Then H1
FΛ
pK,Tq has Λ-rank one, and

there is a finitely generated torsion Λ-module M such that
(i) X � Λ`M `M,

(ii) charΛpMq divides charΛpH1
FΛ
pK,Tq{Λκ1q.

Remark 2.3.4. 
 The assumption EpKqrps � 0 (equivalently, the hypothesis
pH.1q) is not essential. Since the Iwasawa Main Conjectures are invariant
under isogeny, we are content with working with an isogenous curve which
satisfies the assumption, thanks to Ribet’s Lemma. (See also [KY24, section
0.2, section 1.4].)


 If one considers the most general setting as in [KY24], the ‘κ1’ might be a
p-power times the Kolyvagin class constructed in [CGLS22]. The following
equivalence of the anticyclotomic Main Conjectures will also be slightly
different (see [KY24, Theorem 3.0.6, Theorem 3.0.7]). For simplicity we
do not discuss the most general case and leave the details until Chapter 3.

To get the reversed divisibility, we now appeal to the Greenberg’s Main Conjecture
recalled in section 2.2.2. As before, let FGr denote Greenberg’s local conditions,
that is,

H1
FGr

pKw,�q �

$'&
'%

H1pKw,�q if w � v,

0 if w � v,

H1
urpKw,�q else,

where � �ME or T. In general, one should consider the unramified Selmer groups
introduced in [KY24], where the local condition at v is replaced by

ker
�
H1pKv,�q resÝÝÑ H1pIv,�qGv{Iv

�
where Iv is the inertia subgroup at v. However, it is shown in loc. cit. that
these two Selmer groups generate the same characteristic Λ-ideals for all relevant
modules. Therefore for simplicity we will stick to the Greenberg’s Selmer group in
this subsection. We first study the comparison between the two types of Iwasawa
Main Conjectures.

Proposition 2.3.5 (Proposition 4.2.1 in [CGLS22]). Assume that p � vv splits in
K and that EpKqrps � 0. Then the following statements are equivalent:

(i) Both H1
FΛ
pK,Tq and X � H1

FΛ
pK,MEq_ have Λ-rank one, and the divisi-

bility
charΛpXtorsq � charΛpH1

FΛ
pK,Tq{Λκ8q2

holds in Λ.
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(ii) Both H1
FGr

pK,Tq and XE � H1
FGr

pK,MEq_ are Λ-torsion, and the divisi-
bility

charΛpXEqΛur � pLEq
holds in Λur.

Moreover, the same result holds for opposite divisibilities.

Here the κ8 is a class appearing in the equivalence and is closely related to
κ1 (see [CGLS22, Remark 4.1.3]). The proof of the equivalence between the two
Iwasawa Main Conjectures is carefully explained in [Cas17, Appendix A], where
the key is the existence of a Perrin-Riou regulator map (or a ‘big logarithm map’)
relating the Heegner point to the BDP p-adic L-function.

Proposition 2.3.6 (Theorem A.1 in [Cas17]). Under Assumption 2.0.1, if f is
p-ordinary, then there exists an injective Λac -linear map

L� : H1pKv,Fil�TqZnr
p
Ñ Λnr

with finite cokernel such that

L�presvpzf qq � �LE � σ�1,v

where σ�1,v P Γ has order two.

Combining Theorem 2.3.3 and Proposition 2.3.5, we also get the following one-side
divisibility of the Greenberg’s Main Conjecture.

Corollary 2.3.7. Assume that p � vv splits in K and that EpKqrps � 0. Then
Both H1

FGr
pK,Tq and XE � H1

FGr
pK,MEq_ are Λ-torsion, and the divisibility

charΛpXEqΛur � pLEq
holds in Λur.

The insight in [CGLS22] is that, in the residually reducible case, the residual
representation Erps itself, or rather, the two characters φ,ψ appearing in the short
exact sequence

0 Ñ Fpφq Ñ Erps Ñ Fpψq Ñ 0,

should already encode enough arithmetic information of E in terms of Iwasawa
invariants. More precisely, they showed that the Iwasawa invariants of E are the
sum of those of the two characters φ and ψ, i.e.


 λpXEq � λpXφq � λpXψq � λpPφ,ψ,Eq, µpXEq � µpXφq � µpXψq � 0,

 λpLEq � λpLφq � λpLψq � λpPφ,ψ,Eq, µpLEq � µpLφq � µpLψq � 0.

Here Xϑ are defined similarly as Xf by replacing ME with Mϑ � ZppϑqbΛ_ where
ϑ : GK Ñ Z�

p is the (Teichmüller lift) of φ or ψ, and Lϑ is the associated Katz p-adic
L-function. Pφ,ψ,E is a certain factor that cancels on both sides. In [CGLS22] one
needs to put some restrictions on the characters, excluding the trivial character
in particular. Such comparisons were extended to arbitrary characters in [KY24].
When one of φ and ψ is the trivial character (note that one has φψ � ω the mod p
cyclotomic character), the first equation becomes


 λpXEq � 1 � λpXφq � λpXψq � λpPφ,ψ,Eq.
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In fact, all the µ-invariants are vanishing in their (and also our) settings by
results of [Hid10], which plays a crucial role in their arguments. It is this fact that
allows them to interpret the λ-invariants of E and the characters φ and ψ as the
dimensions of some finite Selmer groups, which makes a direct comparison possible.

The final ingredient for the proof of the Iwasawa Main Conjectures for E is the
following consequence of the Iwasawa Main Conjectures for the characters. It is
discussed in detail in [KY24].

Lemma 2.3.8 ([CW78] and [Rub91]. See also [dS87].). Let ϑ : GK Ñ Z�
p be a

finite order character.
If ϑ � 1, then


 µpXϑq � µpLϑq,

 λpXϑq � λpLϑq.

If ϑ � 1, then the equality between µ-invariants still hold, and

 λpXϑq � λpLϑq � 1.

Thus in any case, one gets the equalities
λpXEq � λpLEq and µpXEq � µpLEq.

We then obtain the Main theorem from [CGLS22], [CGS23] and [KY24].

Theorem 2.3.9 (Iwasawa Main Conjectures for good ordinary reduction. See
Theorem 3.0.7, Remark 3.0.8 in [KY24]). Assume that p � vv splits in K. Then
the following statements hold:

(HPMC) Both H1
FΛ
pK,Tq and X � H1

FΛ
pK,Mf q_ have Λ-rank one, and the equality

charΛpXtorsq � charΛpH1
FΛ
pK,Tq{Λκ8q2

holds in Λac.
(GrMC) Both H1

FGr
pK,Tq and Xf � H1

FGr
pK,Mf q_ are Λ-torsion, and the equality

charΛpXf qΛnr � pLf q
holds in Λnr.

2.4. A control theorem. Another ingredient we need in proving the p-converse
theorem is an anticyclotomic control theorem. In the good ordinary case, it is a
combination of [JSW17, section 3] (which studies the anticyclotomic Selmer group
in the anticyclotomic setting) and [Gre99, section 3] (which studies the ordinary
Selmer group in the cyclotomic setting).

Theorem 2.4.1. Let E{Q be an elliptic curve which has good, ordinary reduction
at p, then the map

Selp8pE{Kq Ñ Selp8pE{K8qΓ
has finite kernel and cokernel.

Proof. As in [Gre99, section 3], for M an algebraic extension of K, let PEpMq :�± H1pMη,Erp
8sq

im pκηq
denote the codomain of the global-to-local map defining the Selmer

group Selp8pE{Mq, where η runs through all places of M , and let GEpMq :�
im pH1pM,Erp8sq Ñ PEpMqq. Then there is a commutative diagram with exact
rows
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0 Selp8pE{Kq H1pK,Erp8sq GEpKq 0

0 Selp8pE{K8qΓ H1pK8, Erp8sqΓ GEpK8qΓ.
s

locS

h g

From snake lemma, it suffices to study kerphq, coker phq and kerpgq, the first two of
which are easily seen to be finite. To show the finiteness of kerpgq, it suffices to
consider the kernel of r : PEpKq Ñ PEpK8qΓ, which is a product of the kernels of

rw : H1pKw, Erp8sq
im pκwq Ñ H1pK8, η, Erp8sq

im pκηq
for each place w of K, where η is any place of K8 above w.

In the anticyclotomic setting, one cannot use the arguments in [Gre99] directly
for primes not above p, since not every prime is finitely decomposed in K8. Since
the local conditions away from p of the ordinary Selmer groups and those of the
anticyclotomic Selmer groups agree (as they are both defined as the unramified local
conditions), the arguments in [JSW17, Theorem 3.3.7, Cases 1(a)(b), 2(a)(b)] show
that all such kerprwq are finite.

It remains to study kerprvq and kerprvq. The arguments in [Gre99, Lemma
3.4] still apply since the assumptions in Theorem 2.4 from op. cit., namely that
GalpK8,η{Kwq contains an infinite pro-p subgroup and that the inertia subgroup of
GalpK8,η{Kwq is of finite index are still satisfied for w equal to both v and v for
the anticyclotomic Zp-extension K8. □

2.5. Proof of the p-converse theorems. We now explain how our p-converse
theorems would follow from the Heegner Point Main Conjecture, at least in the good
ordinary case (see [CGLS22, Theorem 5.2.1] for a reference). In fact, we only need
one divisibility. We first recall a theorem of Kolyvagin, which works for any prime.

Theorem 2.5.1 (Kolyvagin). Let E{Q be an elliptic curve and p be a prime. Let
r P t0, 1u. Then

ords�1LpE{Q, sq � r ñ corankZpSelp8pE{Qq � r.

Here Selp8pE{Qq is the usual p8 Selmer group defined similarly as in section 0.2
with K replaced by Q (that definition makes sense for any number field).

The proof of the p-converse theorem relies on a choice of an auxiliary imaginary
quadratic field K over which E does not have CM and the anticyclotomic Iwasawa
Main Conjectures holds.

Proof of the p-converse in good ordinary case. Again let r P t0, 1u.
When corankZpSelp8pE{Qq � r, we could choose a K which satisfies Assump-

tion 2.0.1 such that ords�1LpEK{Q, sq � 1 � r, where EK is the twist of E by
K. We also assume that E does not have CM by K. Then by Theorem 2.5.1,
corankZpSelp8pEK{Qq � 1 � r. It then follows that corankZpSelp8pE{Kq � 1.
Theorem 2.4.1 then implies that Selp8pE{K8qΓ also has Zp-corank 1, or equiva-
lently, XΓ has Zp-rank 1. Indeed, from the discussion after [How04, Theorem A],
there is an pseudo-isomorphism from Selp8pE{K8q_ to X. On the other hand,
from Theorem 2.3.2 one has

rkZpXΓ � rkZpΛΓ � 2corankZpMΓ � 1� 2corankZpMΓ,

so MΓ must be finite.
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This is equivalent to T ∤ fΛpMq, so by Theorem 2.3.9 (in fact, the divisibility ‘�’
is enough), T ∤ fΛpH1

FΛ
pK,Tq{Λκ8q, which in turn means pH1

FΛ
pK,Tq{Λκ8qΓ is

finite, so κ8 is non-torsion.
There is an injection H1

FΛ
pK,TqΓ ãÑ SppE{Kq coming from taking first cohomol-

ogy of the short exact sequence

0 Ñ T �TÝÑ T Ñ TpE Ñ 0.
It then follows that κ8 has non-torsion image in SppE{Kq, but by construction the
image is a nonzero multiple of coresK1{Kpy1q where y1 is the classical Heegner point.
Therefore by Gross–Zagier formula ords�1LpE{K, sq � 1. Since ords�1LpE{K, sq �
ords�1LpE{Q, sq � ords�1LpEK{Q, sq, it follows that ords�1LpE{Qq � r. □

3. Iwasawa theory of elliptic curves at primes of potentially
ordinary reduction

In this section we treat the case where E{Q is an elliptic curve and p is a prime of
potentially good ordinary reduction for E. We let L be a finite extension of K where
E gains good reduction, and K is an imaginary quadratic field satisfying Assump-
tion 2.0.1 as before. Some of our arguments also allow potentially multiplicative
reduction.

To obtain a p-converse theorem in the potentially ordinary case, one would
naturally hope to argue as in the good ordinary case (see section 2.5), namely, proving
an Iwasawa Main Conjecture and appealing to a control theorem. However, several
definitions no longer make sense in the bad reduction case, including Fil�wpTpEq
which was defined as the kernel of reduction of the Tate module at a place w | p in
K. In particular, one needs to find a reasonable substitute of the ordinary Selmer
group.

Note that one could on the other hand always define, regardless of the reduction
type, the Bloch–Kato Selmer group H1

BKpF, V q with the following local conditions:

H1
BKpFw, V q �

$'&
'%

H1
urpFw, V q v ∤ p8,

kerpH1pFw, V q Ñ H1pFw, V bQp Bcris qq w | p,
0 w | 8,

where Bcris is Fontaine’s ring of crystalline periods, F is any number field and w is
a prime of F , and V � TpE bQp. One could also defined the Bloch–Kato Selmer
groups for T :� TpE and A :� V {T � Erp8s via propagation in terms of the short
exact sequence

0 Ñ T Ñ V Ñ AÑ 0.
The Bloch–Kato Selmer groups H1

BKpK,Aq (resp. H1
BKpK,T q) agree with the

classical Selmer groups Selp8pE{Kq (resp. SppE{Kq). When E has ordinary reduc-
tion at p, they almost agree with the ordinary Selmer groups H1

Ford
pK,Aq (resp.

H1
Ford

pK,T q) we defined in section 2.3, which were necessary for our arguments. In
fact, when E has ordinary reduction at a place w of F above p, the local conditions
H1

BKpFw, V q and H1
ordpFw, V q agree, where, in the multiplicative case (which is

necessarily of weight 2 by [Ski14, Lemma 2.1.2]), the one dimensional subspace
Fil�pV q is defined so that V {Fil�pV q is unramified. It is sometimes inconvenient
to work with the Bloch–Kato Selmer group directly. We will therefore define some
appropriate Selmer groups that turn out to be the same as the Bloch–Kato ones.
Then we formulate and prove the Heegner Point Main Conjecture and a control
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theorem as in the good ordinary case. The p-converse theorem will follow as a
consequence. First we need to study Galois representations attached to elliptic
curves of potentially ordinary reduction.

3.1. Potentially ordinary reduction and twists. In this subsection, let f be a
newform of weight 2 associated to an elliptic curve E. In general, one difficulty in
studying Iwasawa theory for f at bad primes lies in the fact that the Euler factor at
p is trivial, which makes it hard to obtain local information. For example, in [CH18],
to study generalized Heegner cycles one needs to assume there is a p-adic unit root
of the Hecke polynomial T 2 � appfqT � p, which doesn’t exist if appfq � 0. In
this subsection we recall the work in [Nek06] which says that if E has potentially
ordinary reduction, then f comes from a twist of an ordinary newform f̃ . This fact
allows us to study the unit appf̃q to get useful information about f . We will then
use the theory developed in [JLZ21], a generalization of [CH18], to study so-called
Heegner pairs.

We begin with the following key observation.

Theorem 3.1.1 (Proposition 12.11.5 (iv) in [Nek06]). Let E be an elliptic curve
defined over Q and assume E has potentially ordinary reduction at p. Let f be the
associated weight 2 newform. Then there is a finite order character ε such that
f b ε�1 is ordinary at p.

Thus there exists a weight 2 newform f̃ ordinary at p such that f � f̃ b ε, in the
sense that aℓpfq � aℓpf̃qεpℓq where aℓpfq (resp. aℓpf̃q) are the Fourier coefficients
of f (resp. f̃) for all pℓ, p � condpεqq � 1.

Now there are 2 situations:
Case I f is a potentially good ordinary modular form of weight 2 for which f̃ has

good reduction.
Case II f is a potentially multiplicative modular form of weight 2, in which case f̃

necessarily has multiplicative reduction at p.
Since we assume f has trivial nebentypus, f̃ is force to have nebentypus ε�2, i.e.,

f̃ P S2pΓ0pN 1q, ε�2q, where N 1 is the level of f̃ . Since we assume f has additive
reduction at p, ε must be ramified at p, i.e. p | condpεq. In particular, if f̃ also has
trivial nebentypus (e.g., when we are in case II), ε must be a quadratic character
ramified at p, or equivalently, ε correspond to an imaginary quadratic field k where
p does not split.

We see that an elliptic curve E with corresponding weight 2 form f that has
potentially ordinary reduction at p is always associated with a pair pf̃ , εq such that
f � f̃ b ε and f̃ is ordinary. We choose V pfq to be the p-adic Galois representation
attached to a modular form so that when f corresponds to an elliptic curve E, V pfq
agrees with VE :� TpEbQp (i.e., it is dual to Deligne’s construction). In particular,
the characteristic polynomials of arithmetic Frobenius at ℓ ∤ pN agree with the
Hecke polynomial of f . On the other hand, to study a potentially multiplicative
form of weight 2, one would naturally hope to study a twisted Hida family tfkb εku
consisting of twists of good ordinary forms. As we will see shortly, the correct thing
one should consider are ‘Heegner pairs’, where in some sense corresponds to self-dual
twists of the representations attached to modular forms with nebentypus.

Recall that our fixed imaginary quadratic field K satisfies the Heegner hypothesis,
i.e., every prime ℓ | N is split in K. Since N 1 | lcmpN, condpεq2q, we further assume
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the prime divisors of condpεq are also split in K, so that every prime ℓ | N 1 is also
split in K. Hence there exists an ideal N1 � OK such that

OK{N1 � Z{N 1Z.
Choose a Hecke character χ of infinity type p0, 0q whose restriction to A�

Q is ε�2

(equivalently, the restriction to Ô�
K is ε2 � ε�1

f̃
. See [BDP13, section 4]). Such a

Hecke character exists thanks to [JLZ21, Remark 2.1.2]. Now the pair pf̃ , χq is a
Heegner pair to which one could associate a Heegner point zpf̃ ,χq.

The following results from op. cit. will be adapted.
Proposition 3.1.2 (Theorem B in [JLZ21]). Let pf̃ , χq be a pair of an p-ordinary
form f̃ P S2pΓ0pN 1q, ε�2q and a Hecke character χ of finite type pN1, ε�2q and
infinity type p0, 0q. If p ∤ N 1, then there is a Perrin-Riou regulator map that maps
zpf̃ ,χq,8 to the BDP p-adic L-function Lppf̃qpχq up to a unit.

The above result is a generalization of Proposition 2.3.6 to pairs pf̃ , χq, and will
be revisited in section 3.4. In particular, it covers case (I) above. This will be
the key in showing the equivalence of the Heegner point Main Conjecture and the
Greenberg’s Main Conjecture once suitable definitions and formulations are in place.
In fact, the original result from [JLZ21] also covers modular forms of higher weights,
where the Hecke characters will also have nonzero infinity type. We will not consider
such Heegner pairs in this work.

With the above definition of Heegner pairs, the natural question to ask is how
do they relate to our potentially good ordinary form. In general, Hecke characters
with fixed central character is not unique (in fact, they can differ by some finite
order anticyclotomic characters). The corresponding GK-representations are also
different. However, their anticyclotomic theory will not the detect the difference.
In what follows, we will specifically construct a Heegner pair whose corresponding
GK-representation agrees with the one for our potentially good ordinary form.
Proposition 3.1.3. Let f � f̃ b ε be a weight 2 form associated to an elliptic curve
of potentially good ordinary reduction at p. Then there is a Heegner pair pf̃ , χεq such
that V pf̃ b εq|GK agrees with V pf̃q|GK b χGal

ε where χGal
ε is the Galois character

over GK associated to the Hecke character χε over K.
Proof. Consider the following commutative diagram

A�
K,f{K� GalpKab{Kq

A�
Q,f{Q� GalpQab{Qq C�

p

ArtK

NmK{Q ϑK{Q
χGal
ε

ArtQ

ε�1

resK{Q

ε0

where ϑK{Q is the natural map induced by the inclusions Q � K and Qab � Kab.
We fix the character ε�1 which will determine ε0 by a choice of the normalization

of the Artin maps. We follow the convention in [JLZ21], so that uniformizers map
to geometric Frobenius elements. In other words, for any ℓ ∤ Np, ε0 maps Frobgeo

ℓ

to εpℓq�1. We claim that χε :� ε�1 � NmK{Q is the desired Hecke character such
that (i) pf̃ , χεq is a Heegner pair and (ii) V pfq|GK � V pf̃ b εq|GK agrees with
V pf̃q|GK b χGal

ε .
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We first check (i). This follows from the fact that χε|A�
Q
� χε � resK{Q �

ε�1 � NmK{Q � resK{Q � ε�2 since composing norm with restriction introduces a
square.

Now we check (ii). First note that GalpKab{Kq is isomorphic to the profinite
completion of A�

K,f{K�, so by the universal property of profinite completion, there
is a map χGal

ε from GalpKab{Kq to C�
p such that χε � χGal

ε � ArtK . This is
the GK-character corresponding to χε (note that GK-characters factor through
GalpKab{Kq). To check the two GK-representations agree, it suffices to check that
the traces of the arithmetic Frobenius elements at λ | ℓ in K for a density 1 set of
rational ℓ ∤ pN match on both sides. Hence we consider two cases depending on if ℓ
is either inert or split in K.

Case (I): ℓ is inert in K. In this situation, there is a unique prime λ above ℓ
and the inclusion of Frobari

λ from Gλ to Gℓ (the decomposition groups) is pFrobari
ℓ q2.

Hence the trace of Frobari
λ under V pf̃ b εq|GK is paℓεpℓqq2. On the other hand, recall

that ε0 maps Frobgeo
ℓ to εpℓq�1, so it maps Frobari

ℓ to εpℓq and the trace of Frobari
λ

under χGal
ε will be εpℓq2. Thus the trace of Frobari

λ under V pf̃q|GK b χGal
ε is a2

ℓεpℓq2
which agrees with that for V pf̃ b εq.

Case (II): ℓ splits in K. In this situation, there are two places λ1, λ2 above ℓ and
the inclusion of Frobari

λi from Gλi to Gℓ is Frobari
ℓ for i � 1, 2. As in the previous

case, one easily checks that the traces of Frobari
λi under both GK -representations are

aℓεpℓq. □

According to [JLZ21, Remark 2.3.3], V :� V pf̃q b χGal
ε satisfies V τ � V �p1q

(note that their choice of Vppfq is dual to our V pfq). By abuse of notation, we will
occasionally use �b ε to mean �b χGal

ε where � can be V pf̃q, Tf̃ or Fil� of them.
Thus according Proposition 3.1.3, V pfq � V pf̃ b εq � V pf̃q b ε makes sense.

Finally, we note that Proposition 3.1.2 does not cover cases (II). However, the
Heegner cycles associated to a Heegner pair is still available, and one could possibly
argue as in [KY24, section 5] to study (twists of) multiplicative forms using Hida
arguments.

From now on, we assume p ∤ N 1.

3.2. Twisted ordinary Selmer group. In this subsection, we naturally extend the
definitions for a p-ordinary form to a Heegner pair using results from the previous
subsection. In particular, these Selmer groups also agree with the Bloch–Kato
Selmer groups. For our applications, it is sufficient to work with a Heegner pair
pf̃ , χεq coming from an elliptic curve of potentially good ordinary reduction as before.
However, we choose to work in general contexts where f̃ is any p-good ordinary
form unless otherwise stated.

Let pf̃ , χεq be any Heegner pair. From the p-ordinarity of f̃ , there is a short
exact sequence

0 Ñ Fil�pV pf̃qq Ñ V pf̃q Ñ Fil�pV pf̃qq Ñ 0
such that Fil�pV pf̃qq is unramified.

One then obtains the following twisted sequence
0 Ñ Fil�pV pf̃qq b εÑ V pf̃q b εÑ Fil�pV pf̃qq b εÑ 0,

which will be abbreviated as
0 Ñ Fil�pVεq Ñ Vε Ñ Fil�pVεq Ñ 0
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from now. Note that Fil�pVεq may no longer be unramified at p if p | condpεq. For
example, when f � f̃ b ε is a modular form with CM, we have Vε � V pfq and one
can explicitly choose ε so that p | condpεq (see [Mü24, section 5]). Even though
we generally assume p | condpεq since pf̃ , χεq should correspond to a modular form
with additive reduction at p, we do not make it explicit and all the results still hold
if p ∤ condpεq.

Let Fil�pTεq :� Fil�pTf̃ q b ε, where Fil�pTf̃ q :� Tf̃ X Fil�pV pf̃qq and Tf̃ is any
Galois stable lattice of V pf̃q. Since f̃ is ordinary at p, when f̃ corresponds to an
elliptic curve E, Fil�pTf̃ q is just Fil�wpTpEq � kerpTpE Ñ TpẼq as before. Then we
have the natural definitions of the ordinary Selmer groups twisted by ε, analogous
to the ordinary Selmer group.

Definition 3.2.1. Let pf̃ , χεq be a Heegner pair and ε be the central character of
χ. The ordinary Selmer group twisted by ε of Vε � V pf̃q b ε is given by the local
condition

H1
Ford,ε

pKw, Vεq�
#

im pH1pKw,Fil�pVεqq Ñ H1pKw, Vεqq if w | p;
H1

urpKw, Vεq else,

The ordinary Selmer group twisted by ε of Tε :� Tf̃ b ε and Aε :� Vε{Tε are defined
via propagation with respect to the short exact sequence

0 Ñ Tε Ñ Vε Ñ Aε Ñ 0

As before, we will actually work with the following Selmer triple pTα,ε,Ford,ε,Lf̃ ,εq,
where


 Tα,ε � pTf̃ b εq bRpαq,

 Ford,ε is the ordinary Selmer structure twisted by ε on Vα,ε � Tα,ε b Φ

defined with ΣpFord,εq � tw | pNu and

H1
Ford,εpKw, Vα,εq :�

#
im pH1pKw,Fil�pVα,εqq Ñ H1pKw, Vα,εqq if w | p;
H1

urpKw, Vα,εq else,

where Fil�pTα,εq :� pFil�pTf̃ qbεqbRpαq and Fil�pVα,εq :� Fil�pTα,εqbΦ.
Let Ford,ε also denote the Selmer structure on Tα,ε and Aα,ε :� Tα,ε b
Φ{R � Vα,ε{Tα,ε by propagation.


 Lf̃ ,ε is defined in the same way as LE with TpE replaced by Tf̃ b ε and
aℓpEq replaced by aℓpf̃qεpℓqq.

Remark 3.2.2. Recall that if an elliptic curve E{Q has potentially ordinary
reduction at p with associated weight 2 newform f , then f � f̃ bε for a Heegner pair
pf̃ , χεq and Tf � Tf̃ b ε. Letting Fil�pTf q denote Fil�pTεq, we formally retrieve the
original definition of the Selmer triple for f (or rather, for E). One should keep in
mind that the filtration is only formally defined and Fil�pV pfqq :� V pfq{Fil�pV pfqq
may not be unramified. It is unramified up to a finite order character, however.

In the setting of the previous remark, we now compare the ordinary Selmer
groups twisted by ε of Mpfq to the Bloch–Kato Selmer groups H1

BKpK,Mpfqq,
where Mpfq � V pfq, T pfq or Apfq.

We first consider the Selmer groups for V pfq � V pf̃q b ε. We will show that the
local conditions of both Selmer groups differ by finite amount (more precisely, there
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is a map between them with finite kernel and cokernel). Note that it suffices to
consider the places w � v or v above p, since away from p the local conditions agree.

Choose a finite Galois extension L{K (for example, take L � Kpεq) such that the
localization Lu at a place u | w | p trivializes ε. Consider the following commutative
diagram
0 H1pKw,Fil�pV pfqαqq H1pLu,Fil�pV pfqαqqGalpLu{Kwq 0

0 H1pKw, V pfqαq H1pLu, V pfqαqGalpLu{Kwq 0,

�

resLu{Kw p�q

where V pfqα � Vα,ε and Fil�pV pfqαq � Fil�pVα,εq, and the maps are the natural
restriction maps. The rows are isomorphisms because the modules in the cohomology
groups are vector spaces (an explicit isomorphism can be given by a composition of
restrictions and corestrictions). It the follows that

im pH1pKw,Fil�pV pfqαqq Ñ H1pKw, V pfqαqq
�res�1

Lu{Kw
pim pH1pLu,Fil�pV pfqαqq Ñ H1pLu, V pfqαqqGalpLu{Kwqq

Similarly there is a commutative diagram
0 0

H1
BKpKw, V pfqαq H1

BKpLu, V pfqαqGalpLu{Kwq

0 H1pKw, V pfqαq H1pLu, V pfqαqGalpLu{Kwq 0

0 H1pKw, V pfqα bBcris q H1pLu, V pfqα bBcris qGalpLu{Kwq 0,

resLu{Kw p�q

�

and it follows that

H1
BKpKw, V pfqαq � res�1

Lu{Kw
pH1

BKpLu, V pfqαqGalpLu{Kwqq
Since Lu trivializes ε, when considered as modules over Lu, Mε :�Mf̃bε is identified
Mf̃ for M � V, T or A, and Vα,ε is identified with V pf̃qα :� pTf̃ b Rpαqq b Φ.
Furthermore, Fil�pVα,εq is identified with Fil�pV pf̃qαq :� pFil�pTf̃ q b Rpαqq b Φ.
In particular,

im pH1pLu,Fil�pVα,εqq Ñ H1pLu, Vα,εqqGalpLu{Kwq

can be identified with

im pH1pLu,Fil�pV pf̃qαqq Ñ H1pLu, V pf̃qαqGalpLu{Kwqq.
By p-ordinarity of f̃ , the last group is the same as

H1
BKpLu, V pf̃qαqGalpLu{Kwq,

which is in turn identified with

H1
BKpLu, V pfqαqGalpLu{Kwq.

Combining the above identifications, we arrive at the following observation.
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Proposition 3.2.3. Let f be a weight 2 potentially p-ordinary newform correspond-
ing to a Heegner pair pf̃ , χεq such that f � f̃ b ε. The ordinary Selmer group of f
of V pfq, defined as the ordinary Selmer group twisted by ε for V pf̃q b ε agrees with
the Bloch–Kato Selmer group for V pfq.

Consequently, the two types of Selmer groups for Tf,α � Tα,ε and Af,α � Aα,ε
also agree, since the local conditions come from propagation.

3.3. One divisibility of the Heegner Point Main Conjecture. In this subsec-
tion, we run a Kolyvagin system argument for the Heegner pair pf̃ , χεq to show one
divisibility of the Heegner Point Main Conjecture, which we first formulate. We will
keep the conventions from section 2 and notations from section 3.2.

Let Mε � Tε bZp Λ_ and Tε �M_
ε p1q � Tε bZp Λ be as before. Put

Fil�pMεq :� Fil�pTεq bZp Λ_ and Fil�pTεq :� Fil�pTεq bZp Λ.
Define the ordinary Selmer structure FΛ,ε twisted by ε on Mε and Tε by

H1
FεpKw,Mεq :�

#
im pH1pKw,Fil�pMεqq Ñ H1pKw,Mεqq if w | p
0 else,

and

H1
FΛ,ε

pKw,Tεq :�
#

im pH1pKw,Fil�u pTεqq Ñ H1pKw,Tεqq if w | p
0 else,

Denote by
X � H1

FΛ,ε
pK,Mεq_ � HomctspH1

FΛ,ε
pK,Mεq,Qp{Zpq

the Pontryagin dual of the associated Selmer group H1
FΛ,ε

pK,Mεq.
Conjecture 3.3.1 (Heegner Point Main Conjecture). H1

FΛ,ε
pK,Tεq has Λ-rank one

and there is a finitely generated torsion Λ-module M such that
(i) X � Λ`M `M ,

(ii) charΛpMq � charΛpH1
FΛ,ε

pK,Tεq{Λκ1q where κ1 is a class coming from a
Heegner point associated to the Heegner pair pf̃ , χεq as in [JLZ21].

The remaining part of this section is devoted to the proof of the structure theorems
and the ‘�’ divisibility of item (ii) in the above conjecture.

Starting from now, as in [KY24], replacing Tf̃ by a different Galois stable lattice
if necessary, we assume that φ|Gp � 1 in the following short exact sequence

0 Ñ Fpφq Ñ ρf̃ b εÑ Fpψq Ñ 0
where Gp � GK is the decomposition group at p. Note that for our self-dual
representation Vε, one knows that φψ � ω, the mod-p cyclotomic character. This
assumption is reasonable because one knows the Iwasawa Main Conjectures will
be independent from the choice of a lattice, and our choice is possible thanks to
Ribet’s lemma. A consequence of this assumption is that H0pK, ρf̃ b εq � 0.

3.3.1. A Kolyvagin system argument. We first need an analog of Theorem 2.3.1.
We will work with the following Selmer triple pTα,ε,Ford,ε,Lf̃ ,εq introduced in sec-
tion 3.2.

We first check the hypothesis (H.0)–(H.3) that the above Selmer triple shall
satisfy.
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 (H.0) is trivially satisfied.

 (H.1) is our running hypothesis (to be removed in the end). Specifically,

we assume H0pK, ρf̃ b εq � 0.

 (H.2) is satisfied because the local conditions on Tα,ε come from propagation

from Vα,ε, and hence are Cartesian by [MR04, Lemma 3.7.1].

 (H.3) follows from an analog of [How04, Theorem 2.1.1]. One just need to

take an extra twist by ε of everything. Also note that our Vε is self-dual
by the comments after Proposition 3.1.3.

It then follows as in the ordinary case that we get the following structure theorem.

Proposition 3.3.2 (Analog of Lemma 6.1.1 in [CGS23]). Assume H0pK, ρf̃ b εq � 0
and suppose there is a Kolyvagin system κα,ε � tκα,ε,nu P KSpTα,ε,Ford,ε,Lf̃ ,εq
with κα,ε,1 � 0. Then H1

Ford,ε
pK,Tα,εq has rank one, and there is a finite R module

Mα such that
H1

Ford,ε
pK,Aα,εq � pΦ{Rq `Mα `Mα

with
lengthRpMαq ¤ lengthRpH1

Ford,ε
pK,Tα,εq{R � κα,ε,1q � Eα

for some constant Eα,ε P Z¥0 depending only on Cα, Tα,ε, and rkZppRq.
3.3.2. Iwasawa theory. Now we argue as in the ordinary case to get a desired
divisibility in the Heegner Point Main Conjecture from the above intermediate
result Proposition 3.3.2. The idea is again to use specialization at height-one primes
of Λ. The proof will be similar to that of [CGS23, Theorem 6.5.1] based on [How04],
and we only explain what is different.

To make sense of specialization at height-one primes, we first need an analog
of [How04, Lemma 2.2.7]. Let SP be the integral closure of Λ{P and let αP be the
character of GK on SP via αP : Γ ãÑ Λ� Ñ S�P. From the construction in section
2.2 of op. cit., there are well-defined maps

Tε Ñ TαP,ε and AαP,ε ÑMεrPs
of GK and Λ-modules. To slightly ease the notations, we write P in place of αP

when there is no ambiguity, and we write FP,ε for the Selmer structure associated
to the Selmer triple pTP,ε,Ford,ε,Lf̃ ,εq in section 3.2.

Lemma 3.3.3. For every height-one prime P � pΛ of Λ and every place w of K,
the induced maps

H1
FΛ,ε

pKw,Tε{PTεq Ñ H1
FP,ε

pKw, TP,εq
H1

FP,ε
pKw, AP,εq Ñ H1

FΛ,ε
pKw,MεrPsq

have finite kernels and cokernels which are bounded by constants depending only on
rSP : Λ{Ps.
Proof. We follow the proof in [How04]. The cases for places w not above p are treated
in [MR04, Lemma 5.3.13], so we assume w | p. We will show that H0pK8,w,Fil�pAεqq
is finite so the cokernel of the first map in [How04, eq. (15)] is finite.

To bound the cokernel of the third cokernel of that map, we need the same
finiteness result. When f̃ has weight greater than 2, the Galois action on the
quotient Fil�pVεq of our self-dual representation Vε is an unramified character
times a non-trivial power of the cyclotomic character which stays non-trivial
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over GK8,w by [KY24, Lemma 1.0.2(ii)], so H0pK8,w,Fil�pVεqq � 0. Hence
H0pK8,w,Fil�pAεqq � 0 is finite.

When f̃ has weight 2, let L{K be a finite extension that trivializes ε and let u
be a place of L above w. By L8 we mean the composite field LK8. Then Lu,8 is
a finite extension of Kw,8.

Then H0pLu,8,Fil�pAεqq is naturally identified with H0pLu,8,Fil�pAf̃ qq.To show
the latter is finite, we refer to the proof of [KY24, Theorem 1.3.4 (iii)], where it is
proved that H0pKw,Fil�pMf̃ qq is finite, whose proof also works if we replace Kw by
Lu. So H0pLu,Fil�pMf̃ qq � H0pLu,8,Fil�pAf̃ qq is finite.

Since H0pKw,8,Fil�pAεqq is a subgroup of H0pLu,8,Fil�pAεqq, we obtain a bound
of the desired sort.

The rest of the proof is identical to that of [How04, Lemma 2.2.7]. □

From here, one could argue similarly as in [KY24, Theorem 3.0.5] to obtain
the desired conditional result of a one-side divisibility of the Heegner Point Main
Conjecture.

Theorem 3.3.4 (Analog of Theorem 2.3.2). Assume H0pK, ρf̃ b εq � 0. Suppose
there is a Kolyvagin system κ P KSpTε,FΛ,ε,Lf̃ ,εq with κ1 � 0. Then H1

FΛ,ε
pK,Tεq

has Λ-rank one, and there is a finitely generated torsion Λ-module M such that
(i) X � Λ`M `M,

(ii) charΛpMq divides charΛpH1
FΛ,ε

pK,Tεq{Λκ1q.

That there is indeed a non-trivial Kolyvagin system for the Heegner pair pf̃ , χεq fol-
lows from [JLZ21] (generalizing the results of [CH18]) combined with non-vanishing
results of the BDP p-adic L-function, as is explained in [KY24, Theorem 3.0.6].

Theorem 3.3.5. Assume f̃ has weight 2. Assume p ¡ 2 and that p ∤ N 1. Then there
exists a Kolyvagin system κHeeg P KSpTε,FΛ,ε,Lf̃ ,εq coming from the Heegner pair
pf̃ , χεq such that κHeeg

1 P H1
FΛ,ε

pK,Tεq is non-torsion.

Proof. For simplicity we only consider the weight 2 case (so a � b � k � j � 0
in [JLZ21]), which will be sufficient for our application. Again as in [KY24, Theorem
3.0.6], we need to work with a canonical lattice T̃ that is generally different from
our chosen Tf̃ and may not satisfy the hypothesis (H.1) in section 3.3.1. We use
a tilde to denote relevant modules for the canonical lattice. One then replaces
the appeal to [CH18] by [JLZ21] for the construction of Heegner cycles in [KY24,
Theorem 3.0.6]. To do so, we need a slight generalization of [JLZ21], as we now
explain. In loc. cit. section 3, they only considered the cycles ∆φm coming from
pairs pAm, φmq, which only sees the ‘class field’ direction. In other words, they only
considered the variation along the class fields Krpms and their Heegner cycle zpf̃ ,χεq
is only the base point of a Kolyvagin system. To build the Kolyvagin system, we also
need Heegner cycles that vary in different ‘Kolyvagin’ levels. To do this, we simply
consider cycles ∆npm coming from pairs pAOnpm

, φOnpm
q and consider their images

z
rf̃ ,0s
ét,npm P H1pKrnpms, T̃εq as in [JLZ21, Proposition 3.5.2] (here we take the ring E

in loc. cit. to be Zp instead of Qp) under what essentially is the p-adic Abel–Jacobi
map in [CH18, Section 4.2]. These images are nothing but the zf,Onpm

in [CH18,
eq. (4.2)] where their χ is our χε that essentially sees the nebentypus of f̃ .
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That the Heegner cycles can be turned into a Kolyvagin system is now discussed
in [LV16, Lemma 4.12], except that we take χ � χε instead of the trivial character
in op. cit. section 4.1, and is modified in [KY24] to treat the Eisenstein case. By
an abuse of notation, we will use the same notations from [LV16], omitting the χ.
From [CH18, Section 4], the cycles with nebentypus behaves in the same way as
those with trivial nebentypus. Most results can either be proved directly or by going
up to the field Lu so we have access to the geometric object Ãf̃ . We now explain
the differences in our situation, which only appear in the case v | p. Note that here
we are only working with weight 2 forms so working with a modification of [How04]
would be sufficient, but we would also like to put ourselves in some general contexts.

First, as in [KY24, Theorem 3.0.6], the restriction map

H1pKrns, T̃ε{InT̃εqGpnq Ð H1pK, T̃ε{InT̃εq
can fail to be an isomorphism. We also introduce a p-power pN independent of
n P N so that pN κ̃ has a unique pre-image in H1pK, T̃ε{InT̃εq, still denotes by κ1.

Secondly, in the study of the diagram (22) in [LV16], the injectivity of the right
vertical map follows from the modified arguments in [KY24, Theorem 3.0.6] since
one only uses T̃�ε {In is finite for n � 1 (as usual, the case n � 1 can be studied
seperately).

Thirdly, as is already mentioned in [KY24, Theorem 3.0.6], in general the sur-
jectivity of the trace map trF rns{F can fail, in which case one needs to work with
a Kolyvagin system ‘up to a p-power’. This error can be ignored if one is able to
show the algebraic and analytic µ-invariants of f̃ b ε are equal, for example, in the
Eisenstein case (where they both vanish). Since this work may also suggest some
hints for the residually irreducible case, we also discuss the special case where the
trace map is indeed expected to be surjective (e.g., if the characters are non-trivial
in the Eisenstein case, or the ‘non-anomalous case’ in the non-Eisenstein case) where
one would get a fully functioning Kolyvagin system and hence one divisibility of the
Heegner point Main Conjecture.

Case (I): We first put ourselves in the situation where one has the vanish-
ing of H0pLu, Ã�

f̃
q. From the local Euler characteristic formula, one can show

H1pLu, Ã�
ε q � H1pLu, Ã�

f̃
q � 0. Thus the arguments in [LV16] imply the vanish-

ing of H1pLrnsũ{Lu,H0pLrnsũ, Ã�
ε qq. Note that H1pKv, Ã

�
ε q maps into H1pLu, Ã�

ε q
with kernel H1pLu{Kv,H0pLu, Ã�

ε qq, which is 0 if we choose L according to sec-
tion 1.4, since Ã�

ε has p-power order. It follows that one gets the desired vanishing
and trF rns{F is surjective.

Case (II): Now in the general case when trF rns{F is not expected to be surjective,
one can use the same trick as in [KY24, Theorem 3.0.6] to use another fixed p-power
pt (independent of n) to kill the cokernel of the trace map. This is possible since
the codomain H0pKv, Ã�

ε q (in fact, H0pKv, Ã�
ε q � H0pKv, Ã�

f̃
q) is finite by the

arguments in [KY24, Proposition 1.3.4] whose proof also works in one replaces Kv

by Lu.
The rest of the modification of [LV16, Lemma 4.12] is the same as in [KY24,

Theorem 3.0.6]. Eventually one passes to our chosen lattice Tf̃ from the canonical
lattice T̃ to get a desired Kolyvagin system for Tε. □

We now arrive at a one-side divisibility of the Heegner Point Main Conjecture
under mild hypotheses.
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Theorem 3.3.6. Assume p ¡ 2 and that p ∤ N 1. Assume that H0pK, ρf̃ b εq � 0.
Then H1

FΛ,ε
pK,Tεq has Λ-rank one, and there is a finitely generated torsion Λ-module

M such that
(i) X � Λ`M `M,

(ii) charΛpMq divides charΛpH1
FΛ,ε

pK,Tεq{Λκ1q.
3.4. Equivalence between two Iwasawa Main Conjectures. In this section we
will follow [Cas17, Appendix A] to show the equivalence between the Greenberg’s
Main Conjecture and the Heegner Point Main Conjecture. As in the previous
subsection, we will need to replace the appeal to the big logarithm map (or the
Perrin-Riou’s regulator map) in [CH18] by the one for Heegner pairs in [JLZ21].
We continue to assume p ∤ N 1. We first recall some terminologies.
Definition 3.4.1 (Greenberg’s Selmer groups). The Greenberg’s Selmer group for
the Heegner pair pf̃ , χεq, denoted by H1

FGr
pK,Mεq is defined as

H1pKΣ{K,Mεq Ñ
¹

wPΣ,w∤p
H1pKw,Mεq �H1pKv,Mεq

Denote by X the Pontryagin dual of H1
FGr

pK,Mεq.
Definition 3.4.2 (unramified Selmer groups). The unramified Selmer group for
the Heegner pair pf̃ , χεq, denoted by H1

Fur
pK,Mεq is defined as

H1pKΣ{K,Mεq Ñ
¹

wPΣ,w∤p
H1pKw,Mεq �H1pIv,MεqGv{Iv

These two Selmer groups are identified in the situation of [CGLS22] under their
running hypothesis that ϑ|Gv � 1 or ω. In [KY24] one needs to consider the
unramified Selmer groups. However, as is already recalled in section 2.3, these
two Selmer groups generate the same characteristic Λ-ideal (see [KY24, Lemma
1.3.6]). In fact, following Theorem 3.0.7 in op. cit., in showing the equivalence of
the Iwasawa Main Conjectures, we will stick to the Greenberg’s Selmer groups.

On the analytic side, there is a BDP p-adic L-function Lε :� Lppf̃qpχεq :�
χεpLppf̃qq corresponding to a Heegner pair pf̃ , χεq. We mention that when f � f̃bε,
from the interpolation property ([BDP13, Theorem 5.13]), there is a relation

Lppf̃ , χεp�qq � Lppf, �q.
We have the following explicit form of Proposition 3.1.2.
Theorem 3.4.3 (The explicit reciprocity law). Assume p � vv is split in K. Then
there is an injective Λ-linear map (the Perrin-Riou’s regulator map)

L� : H0pKv,Fil�TεqΛur Ñ Λur

with finite cokernel such that
L�pzpf̃ ,χq,8q � �Lε � σ�1,v,

where σ�1,v P Γ is an element of order two.
Proof. This follows from the specialization to the Heegner pair pf̃ , χεq of [JLZ21,
Theorem B], as in [CH18], since we assume p ∤ N 1. Here the class zpf̃ ,χq,8 is the
specialization of the class coresK1{KpzF,8q in Theorem 5.3.1 in op. cit. to the point
pf̃ , α, χq. Note that we do not specialize to a finite level m here. In particular, if we
specialize our zpf̃ ,χq,8 to the m � 1 case, we will get zrfα,0sét . □
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Now the equivalence between the Iwasawa Main Conjectures follows exactly in
the same way from [Cas17, Appendix A] (the local condition Gr there is the ordinary
local condition for us). One also needs a careful comparison of the class zf̃ ,χ,8
and κHg

1 as is done in [CGLS22, Remark 4.1.3]. We consider their projection to
H1pK,Tεq. From the above theorem, we see zpf̃ ,χq,8 projects to z

rf̃α,0s
ét . On the

other hand, from Theorem 3.3.5, κHg
1 projects to coresK1{Kz

rf̃ ,0s
ét,1 � z

rf̃ ,0s
ét . Now

from [JLZ21, Proposition 3.5.5], zrf̃α,0sét and z
rf̃ ,0s
ét, differ by a unit. Thus, we have

the following.

Proposition 3.4.4. Assume p � vv splits in K and that p ∤ N 1. Assume that
H0pK, ρf̃ b εq � 0. Then the following statements are equivalent:

(HPMC) Both H1
FΛ,ε

pK,Tεq and X � H1
FΛ,ε

pK,Mεq_ have Λ-rank one, and the
divisibility

charΛpXtorsq � charΛpH1
FΛ,ε

pK,Tεq{Λzpf̃ ,χq,8q2

holds in Λac.
(GrMC) Both H1

FGr
pK,Tεq and Xf � H1

FGr
pK,Mεq_ are Λ-torsion, and the divisi-

bility
charΛpXqΛnr � pLεq

holds in Λnr.
Moreover, the same result holds for the opposite divisibilities.

3.5. Comparing Iwasawa invariants. In this section, we compare the Iwasawa µ-
and λ-invariants of the Greenberg’s Selmer groups and the BDP p-adic L-function. In
fact, since these definitions do not see the reduction type of f at p, all the arguments
are exactly the same as in the ordinary case in [KY24]. The equalities between the
Iwasawa invariants of both sides combined with the one-side divisibility obtained in
the previous subsection, force the equality in the Iwasawa Main Conjectures to hold.

More precisely, the analysis on the algebraic side is exactly as in [KY24]. On the
analytic side, recall the relation f � f̃ b ε where f̃ has nebentypus ε�2. Since p is
an Eisenstein prime for f , it is also an Eisenstein prime for f̃ . In particular, there
is an exact sequence

0 Ñ Fpφq Ñ ρf̃ Ñ Fpψq Ñ 0,

from which we obtain a congruence between the non-constant terms of f̃ and a
certain Eisenstein series Gφ,ψ,N 1 (see [Kri16, Remark 32, Theorem 34]). In other
words, f̃ is of partial Eisenstein descent in the sense of op. cit..

Similarly, there is also an exact sequence

0 Ñ Fpφεq Ñ ρf Ñ Fpψεq Ñ 0,

from which we obtain a congruence between the non-constant terms of f̃bε, which is
another newform, and a certain Eisenstein series Gφε,ψε,N . As in [CGLS22, section
2.2], this yields a congruence between the BDP p-adic L-functions

Lε � pLGφε,ψε,N q2pmod pΛurq,
and moreover for the Katz p-adic L-functions Lφε and Lψε an equality

LGφε,ψε,N � E ιφε,ψεLφε
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for a certain factor introduced inloc. cit.. Since pφεqpψεq � 1, the same arguments
in [CGLS22, Theorem 2.2.2] show that the Iwasawa invariants on the analytic side
are compatible with those on the algebraic side.

Now as in [KY24], using the Iwasawa Main Conjectures for the characters proved
by Rubin in [Rub91] (together with [CW78]. See also [dS87, III.1.10]), one obtains
the following theorem.

Theorem 3.5.1. Assume we are in Case (I) of section 3.1, i.e., p ∤ N 1. Assume
that p � vv splits in K. Assume that H0pK, ρf̃ b εq � 0. Then

µpXq � µpLεq � 0 and λpXq � λpLεq.
Consequently,

charΛpXqΛur � pLεq holds in Λur,

or equivalently,

charΛpXtorsq � charΛpH1
FΛ
pK,Tq{Λκ8q2 holds in Λ.

Remark 3.5.2. 
 As in [KY24, Theorem 3.0.8], the proof of the Main Con-
jectures heavily rely on the vanishing of the µ-invariants, especially in the
situation where N, t ¡ 0.


 As in [KY24, Remark 3.0.9], the assumption H0pK, ρf̃ b εq � 0 can be
removed from Ribet’s lemma and Perrin-Riou’s formula.

3.6. Control theorems for potentially good ordinary reduction. In this
subsection, we prove the control theorems for potentially good ordinary reduction.
The proof is similar to that of Theorem 2.4.1, mainly following [Gre99]. In particular,
we assume Vε corresponds to an elliptic curve of potentially ordinary reduction at p,
so that f̃ is a weight 2 newform. In particular, when E is an elliptic curve, we have
Tε � TpE, Vε � TpE bQp and Aε � Erp8s.

We begin by noting that the proof will only be different at places above p. More
precisely, as in the good ordinary case, it suffices to show the map rw has finite
kernel for each place w of K, and for w ∤ p the argument is the same as those
in Theorem 2.4.1. On the other hand, the study of kerprvq and kerprvq in [Gre99,
Lemma 3.4] makes use of the kernel of reduction Erp8s Ñ Ẽrp8s where Ẽ is the
reduction of E at v and v respectively, which becomes more mysterious in if E has
additive reduction at p. Luckily, for the p-converse theorems, we do not need to
understand the kernels completely, and it suffices to show they are finite. In fact, we
will choose an extension which trivializes ε as before, so that Vε is identified with
Vf̃ over this extension and one could apply the arguments from the ordinary case.
It then remains to show climbing up the field only introduces finite errors.

Theorem 3.6.1 (Control theorem). With notations from Theorem 2.4.1, in the
potentially good ordinary but not ordinary case, kerprvq and kerprvq are finite.

Proof. In our notation, for w � v, v, the map rw reads as

rw : H1pKw, Aεq
H1

BKpKw, Aεq
Ñ H1pKw,Mεq

H1
BKpKw,Mεq

.

As in section 3.2, the Bloch–Kato local condition for A agrees with the twisted
ordinary local condition coming from a Heegner pair pf̃ , χq. Similarly, the Bloch–
Kato local condition for ME can be identified with a twisted ordinary local condition.
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Therefore the map rw is identified with
H1pKw, Aεq

p�pim pH1pKw, Fil�pVεqq Ñ H1pKw, Vεqqq
Ñ

H1pKw, Mεq

im pH1pKw, Fil�pMεqqq Ñ H1pKw, Mεqq
.

where p� denotes propagation from H1pKw, Vεq to H1pKw, Aεq. From now on, we
simply write im pH1p�,Fil�p�qqq for images and ignore the codomain when it is
clear from the context.

As before, let Lu{Kw be an extension that trivializes ε. We first assume f̃ is of
good reduction. Then as in the good ordinary case (see [Gre99, Lemma 3.4]), for
G :� GalpLu{Kvq, the ‘restricted’ map

ru : H1pLu, AεqG
p�pim pH1pLu,Fil�pVεqqqqG

Ñ H1pLu,MεqG
im pH1pLu,Fil�pMεqqqqG

has finite kernel.
From snake lemma applied to the maps defining kerprwq and kerpruq, to get

finiteness of kerprwq, it suffices to show finiteness of the map

r : H1pKw, Aεq
p�pim pH1pKw,Fil�pVεqqqq

Ñ H1pLu, AεqG
p�pim pH1pLu,Fil�pVεqqqqG

.

Again from snake lemma applied to the commutative diagram

kerptq kerpsq kerprq

p�pim pH1pKw,Fil�pVεqqqq H1pKw, Aεq H1pKw,Aεq
p�pim pH1pKw,Fil�pVεqqqq

p�pim pH1pLu,Fil�pVεqqqqG H1pLu, AεqG H1pLu,Aεq
G

p�pim pH1pLu,Fil�pVεqqqqG

coker ptq ,

t s r

it suffices to show both kerpsq and coker ptq are finite. Now from the inflation-
restriction exact sequence, kerpsq � H1pGalpLu{Kvq, AGLuε q, which is finite since
GalpLu{Kvq and A

GLu
ε � EpLuqrp8s are both finite (the latter by [KY24, Proposi-

tion 1.3.4 (iii), weight 2 case]. One can replace their Kw by Lu).
It remains to study coker ptq. First note that kerptq is finite because it injects into

kerpsq. We will show that p�pim pH1pKw,Fil�pVεqqqq and p�pim pH1pLu,Fil�pVεqqqqG
have the same Zp -corank, from which the finiteness of coker ptq follows.

Since the restriction map H1pKw,Fil�pVεqq Ñ H1pLu,Fil�pVεqq is an isomor-
phism of vector spaces (the composition of restriction and corestriction is a scalar
multiplication. See for example [NSW08, Corollary 1.5.7]), they have the same
Qp-dimensions. We claim that propagation takes Qp-dimensions to Zp-coranks,
i.e., if a subspace of H1pKw, Vεq has Qp-dimension d, then its propagation into
H1pKw, Vεq has Zp-corank d.

Let V 1 be a d-dimensional subspace of H1pKw, Vεq, and let p�pV 1q be its propa-
gation to H1pKw, Aεq. Then there is an exact sequence

0 Ñ kerpp�q Ñ V 1 Ñ p�pV 1q Ñ 0
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where kerpp�q is a subspace of H1pKw, Tεq, and is hence a finitely generated Zp-
module. Denoting the Zp-rank, the Qp-dimension and the Zp-corank of the three
terms in the above exact sequence by r, d, c respectively, one sees that there must
be an identity r � d � c.

The same is true for subspaces of H1pLu, VεqG since propagation commutes
with invariants. Therefore, from the isomorphism in the previous paragraph, both
p�pim pH1pKw,Fil�pVεqqqq and p�pim pH1pLu,Fil�pVεqqqqG have Zp-corank d. Thus
coker ptq is finite.

Note that all we use is that over the extension Lu, the map ru has finite kernel,
and that the restriction maps only introduce some finite errors. Thus the same
arguments work when f̃ has multiplicative reduction, by the discussion of the
multiplicative reduction in [Gre99, section 3], except that the appeal to [KY24,
1.3.4 (ii)] is now modified as in Lemma 3.3.3 to fit the multiplicative case. □

3.7. The p-converse theorems for potentially good ordinary reduction.
Combining everything above, we arrive at the main theorem in this section.

Theorem 3.7.1. Let E be an elliptic curve defined over Q and let p ¡ 2 be a prime
of potentially good ordinary reduction for E. Assume that Erps is reducible. Let
r P t0, 1u. Then

corankZpSelp8pE{Qq � r ñ ords�1LpE, sq � r,

and so rkZEpQq � r and XpE{Qq   8.

Proof. Let pf̃ , χεq be the Heegner pair associated to E. As in the good ordinary case,
the proof relies on the choice of an imaginary quadratic field K. The only difference
is that in addition to the hypotheses K should verify, we further require that the
prime divisors of condpεq are split in K. As in the proof of [CGLS22, Theorem 5.2.1],
this only impose a finite number of congruence conditions on DK , so the existence
of K is still guaranteed. By replacing the appeal to Theorem 2.4.1 (resp. Theo-
rem 2.3.2, Theorem 2.3.9) to Theorem 3.6.1 (resp. Theorem 3.3.6, Theorem 3.5.1),
the rest of the proof is exactly the same as that in section 2.5. □

3.8. Applications to Goldfeld’s Conjecture. As in [KY24, remark 4.1.2], our p-
converse theorem has the following applications to Goldfeld’s Conjecture in quadratic
twists families with a 3 isogeny where 3 is a prime of potentially good ordinary
reduction.

Corollary 3.8.1. We can obtain better proportions of quadratic twists of (algebraic
and analytic) rank 1 in [BKLOS19, Theorem 2.5] for a fixed elliptic curve, in
particular a lower bound of 5

12 � 41.66 . . . % in the most advantageous cases (for
example, when it’s the curve having Cremona label 19a3). For the twists Ed of the
curve E � 19a3, earlier results in [CGLS22] and [KY24] only apply when d � 1, 2
pmod 3q, covering at least 3

8 � 3
8 � 3

4 of the proportion of the 3-Selmer rank 1 twists.
Our result also cover the twists with d � 0 pmod 3q ( 2

8 of all) that correspond to
additive reduction (necessarily potentially good ordinary because the original curve
is). Consequently, in this family, all curves with 3-Selmer ranks 0 or 1 have algebraic
and analytic rank equal to the 3-Selmer ranks, so at least 5

12 (rank 1) � 1
4 (rank 0)

� 2
3 twists satisfy the BSD rank conjecture. This provides strong evidence for the

Goldfeld conjecture.
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