NEWTON'S LAW OF COOLING OR HEATING

Let
$T=$ temperature of an object,
$M=$ temperature of its surroundings, and
$t=$ time.
If the rate of change of the temperature T of the object is directly proportional to the difference in temperature between the object and its surroundings, then we get the following equation where k is a proportionality constant.

$$
\frac{d T}{d t}=k(M-T), k>0
$$

As the differential equation is separable, we can separate the equation to have one side solely dependent on T, and the other side solely dependent on t :

$$
\frac{d T}{M-T}=k d t
$$

Integrating both sides then gives the following:

$$
\begin{aligned}
\int \frac{d T}{M-T} & =\int k d t \\
-\ln |M-T| & =k t+C \\
\ln |M-T| & =-k t-C \\
e^{\ln |M-T|} & =e^{-k t-C} \\
|M-T| & =e^{-k t-C}
\end{aligned}
$$

Now here is where we need to be careful. We want to drop the absolute value signs to solve for T. To do so, we need to figure out whether $M-T$ is positive or negative. This depends on whether the object is cooling down to the surrounding temperature (in which case $T>M$ and $M-T$ is negative) or is warming up to the surrounding temperature ($T<M$ and $M-T$ is positive).

For cooling, as $M-T$ is negative, $|M-T|=-(M-T)$. So we get

$$
\begin{aligned}
|M-T| & =e^{-k t-C} \\
-(M-T) & =e^{-k t-C} \\
M-T & =-e^{-k t-C} \\
T & =M+e^{-k t-C} \\
T & =M+A e^{-k t}, A=e^{-C}
\end{aligned}
$$

Since the object is cooling down to the surrounding temperature, T will always be greater than M so A will be a positive value. This agrees with the fact that $A=e^{-C}$ must be a positive value.

For heating, $M-T$ is positive, and so $|M-T|=(M-T)$ and we get

$$
\begin{aligned}
|M-T| & =e^{-k t-C} \\
M-T & =e^{-k t-C} \\
T & =M-e^{-k t-C} \\
T & =M-A e^{-k t}, A=e^{-C}
\end{aligned}
$$

This time, as the object is warming up to the surrounding temperature, T is always less than M so A is again a positive value.

