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1. Random Questions

Question 1.1. So: Suppose you have a N×N grid of squares – kind of an infinte-
dimensional chessboard with a lower-right-hand corner, if you will – and consider
the following game we can play on our board:

• We start by putting one coin on the square in the bottom-right-hand corner.
• If we have a coin on some square on our board such that the square imme-

diately north of the coin and the square immediately east of the coin are
both empty, we can remove the coin from our square and put a new coin to
the north and a new coin to the east of this square.

So: Is it possible to clear the region highlighted in green below?

2. Last Week’s Homework

Average: about 63. Interesting points about the HW: not really much. As
evidenced by the average, people seemed to know what was going on. However, if
anything was shaky, or you couldn’t read the comments I wrote next to a given
problem, feel free (as always!) to contact me and I’ll try to clarify things.

3. Basis!

Definition 3.1. So: we define a nonempty set U of vectors to be a space if it is
closed under linear combinations (i.e. scalar multiples of elements of U and sums
of elements of U are again elements of U).

Definition 3.2. For a space U , a basis of U is a linearly independent set of vectors
{vi} that span U – i.e. 〈vi〉 = U .

Examples 3.3. Rn has a basis (the standard basis, natch) given by the vectors
ei = (0, . . . , 1, . . . , 0), where the 1 occurs in the i-th place and all other entries are
0.
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The space of polynomials R[x], where R can be taken to be Z,R,Q or a host
of other things (usually, these are at least rings)(if you don’t know what a ring is,
ignore that comment), has a basis consisting of the polynomials

1, x, x2, x3, x4 . . .

So: given a space, how do we find a basis? The process is very algorithmic (i.e.
there’s a simple step-by-step approach that constructs it for you) – the proof below
illustrates how it goes in general.

Theorem 3.4. Any space U ⊂ Rn has a basis.

Proof. (This holds for all spaces; but in infinite-dimensional cases it gets tricky,
and it’s more illuminating to do the case that you’re going to work in all the time.)

So: U is a space, and thus nonempty. If U consists solely of the 0-vector, then U
is trivially spanned by the empty set; otherwise, there is a v1 ∈ U such that v1 6= 0.

Consider the set U \ 〈v1〉 (where for two sets A, B, A \ B is defined to be the
collection of all elements in A that are not elements in B).

Two cases can hold: either
(1) U \ 〈v1〉 is empty. In this case, halt.
(2) U \ 〈v1〉 is not empty. In this case, pick some element v2 in U that is not 0

and not in 〈v1〉.
From here, again, two cases can hold: either
(1) U \ 〈v1, v2〉 is empty. In this case, halt.
(2) U \ 〈v1, v2〉 is not empty. In this case, pick some element v3 in U that is

not 0 and not in 〈v1, v2〉.
Repeat this process until at some vk we have that U \ 〈v1 . . . vk〉 is empty – such

a stage exists because the space U is contained in Rn, and thus cannot contain
more than n-linearly independent vectors. (question: why is this true?)

So: this collection trivially spans U , as every element in U lies in their span and
they are all elements of U . That they are linearly independent is not much harder
to see: pick any ci such that

k∑
i=1

civi = 0.

Because we picked vk such that it didn’t lie in the span of 〈v1 . . . vk−1〉, we know
that

k∑
i=1

civi = 0⇔
k−1∑
i=1

civi = −ckvk ⇔ ck = 0;

so we have reduced our collection to
k−1∑
i=1

civi = 0.

Repeating this process k times gives us that all of the ci are necessarily 0; so the
vi are linearly independent, and thus are a spanning set! �

Example 3.5. The above process works to find basises in concrete settings. Take,
for example,

U = 〈(1, 2, 3), (4, 5, 6), (7, 8, 9)〉.
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U is not empty, so take v1 = (1, 2, 3). U \ 〈(1, 2, 3)〉 is also not empty, because the
vector (7, 8, 9) isn’t a scalar multiple of (1, 2, 3); so set v2 = (7, 8, 9).

Then, because

(4, 5, 6) =
1
2
· ((7, 8, 9)− (1, 2, 3)) + (1, 2, 3),

we have that U \ 〈(1, 2, 3), (7, 8, 9)〉 is empty; thus, by the reasoning we used in the
proof above, (1, 2, 3), (7, 8, 9) form a basis for U .

Definition 3.6. A space U has dimension n if it has a basis with n elements.
Theorems we will one day prove will show that this is indeed a well-defined concept
(i.e. a space can’t have basises of two different sizes), and that this concept accords
with our intuitive notion of dimension (i.e. dimension 1 is a line, 2 is a plane, 3 is
3-d space, . . . )

4. Orthogonality

Definition 4.1. v1 is orthogonal to v2 iff v1 · v2 = 0. We denote this relation by
writing v1 ⊥ v2. For spaces U , we define U⊥ as the collection of all vectors v such
that for all u ∈ U , v ⊥ u.

Geometrically, the notion of orthogonality coincides with the concept of per-
pindicularity – i.e. it turns out that

• v1 · v2 = |v1||v2| cos(θ), for θ the angle between the two vectors v1 and v2,
and consequently that
• v1 ⊥ v2 iff the angle between them is π/2, i.e. 90 degrees.

You won’t need this for the HW, but I thought it was cool to know, and maybe
will help with your intuition for what’s going on here, and why we would even care
about orthogonality.

Protip: just as we showed that every space has a basis, it turns out that they can
be made to have an orthogonal basis! (i.e. a basis where any two basis vectors are
orthogonal to each other.) This is a cool fact, and we’ll hopefully do that sometime
this quarter – the process is called Gram-Schmidt orthogonalization, and is rather
useful in a lot of things.


